Những câu hỏi liên quan
TV
Xem chi tiết
NL
23 tháng 12 2020 lúc 23:30

\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)

\(\Rightarrow-4\le x+y\le-2\)

\(\Rightarrow2016\le B\le2018\)

\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)

\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)

Bình luận (0)
NT
Xem chi tiết
CD
5 tháng 11 2019 lúc 18:48

\(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2z\left(x-y\right)+z+\left(x^2-8x+16\right)+\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\left(x-y-z\right)^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-z=0\\x-4=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=1\\x=4\\y=3\end{cases}}\)

Vậy \(x=4\)\(y=3\)\(z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
H24
Xem chi tiết
NL
16 tháng 4 2021 lúc 18:01

\(B=\left(x^2+y^2+4+2xy-4x-4y\right)+\left(x^2+z^2+1+2xz-2x-2z\right)+\left(y^2-4y+4\right)+4\)

\(B=\left(x+y-2\right)^2+\left(x+z-1\right)^2+\left(y-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x+y-2=0\\x+z-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\\z=1\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
NL
9 tháng 4 2021 lúc 21:48

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)< 1\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2< 1\)

Nếu tồn tại 1 trong 3 số \(x-y;y-z;z-1\) khác 0

Do x; y; z nguyên

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge1\) (vô lý)

\(\Rightarrow x-y=y-z=z-1=0\)

\(\Leftrightarrow x=y=z=1\)

Bình luận (0)
NN
Xem chi tiết
BT
15 tháng 7 2021 lúc 15:07

Đúng thù thì ❤️ giúp mik nha bạn. Thx bạn

 

undefined

Bình luận (0)
NA
Xem chi tiết
NT
3 tháng 8 2023 lúc 14:15

\(\left\{{}\begin{matrix}3x-6y+2z=-4\\3x-y-3z=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x-6y+2z=-4\\3x-y-3z=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x-6y=-4-2z\\3x-y=1+3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5y=1+3z+4+2z\\3x-y=1+3z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5y=5+5z\\3x=y+1+3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=1+z\\3x=1+z+1+3z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=1+z\\x=\dfrac{4z+6}{3}\end{matrix}\right.\)

\(S=9x^2-8\left(y^2+z^2\right)\)

\(S=9\left(\dfrac{4z+2}{3}\right)^2-8\left[\left(1+z\right)^2+z^2\right]\)

\(S=9.\dfrac{16z^2+16z+4}{9}-8\left[1+2z+z^2+z^2\right]\)

\(S=16z^2+16z+4-8-16z-16z^2\)

\(S=-4\)

Bình luận (0)
NT
3 tháng 8 2023 lúc 14:17

Đính chính \(x=\dfrac{4z+2}{3}\) không phải \(x=\dfrac{4z+6}{3}\)

Bình luận (0)
DB
3 tháng 8 2023 lúc 14:37

S = -4

Bình luận (0)
TV
Xem chi tiết
NM
27 tháng 8 2021 lúc 18:58

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

Bình luận (0)
LL
27 tháng 8 2021 lúc 18:58

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

Bình luận (0)