Những câu hỏi liên quan
H24
Xem chi tiết
TP
4 tháng 2 2020 lúc 10:46

Viết đề mà ko ai đọc được vậy :v

a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)

\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)

\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)

\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa
LH
4 tháng 2 2020 lúc 11:51

\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)

<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)

Xét \(\sqrt{x^2+1}+3-x=0\)

<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))

Xét \(\sqrt{x^2+1}+3-x\ne0\)

pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)

<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)

<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)

<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)

pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)

<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))

=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)

<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)

<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))

=>(2) vô nghiệm

Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)

P/s: Hơi dài :)

Bình luận (0)
 Khách vãng lai đã xóa
H24
4 tháng 2 2020 lúc 13:04

Mấy anh chị khác god phân tích lắm nên em đành làm cách khác:(

\(2x^2+2x+1=\left(4x-1\right)\sqrt{x^2+1}\)

Đặt \(\sqrt{x^2+1}=a\ge1\)

\(PT\Leftrightarrow-2a^2+\left(4x-1\right)a-2x+1=0\)

\(\Leftrightarrow\left(2a-1\right)\left(2x-a-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}a=\frac{1}{2}\left(L\right)\\2x=a+1\left(1\right)\end{matrix}\right.\)

Xét (1): Do \(a\ge1\rightarrow a+1\ge2\Rightarrow x\ge1\)

(1) \(\Leftrightarrow2x=\sqrt{x^2+1}+1\)

\(\Leftrightarrow\frac{5}{4}x-\sqrt{x^2+1}+\frac{3}{4}\left(x-\frac{4}{3}\right)=0\)

\(\Leftrightarrow\left(x-\frac{4}{3}\right)\left[\frac{\frac{3}{16}\left(3x+4\right)}{\frac{5}{4}x+\sqrt{x^2+1}}+\frac{3}{4}\right]=0\)

\(\Leftrightarrow x=\frac{4}{3}\) (vì cái ngoặc to luôn > 0 với mọi \(x\ge1\))

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
MT
Xem chi tiết
MT
22 tháng 7 2021 lúc 16:07

mong mọi người giải giúp em vs gianroigianroi

Bình luận (0)
LH
Xem chi tiết
LH
Xem chi tiết
NT
Xem chi tiết
NQ
14 tháng 3 2018 lúc 19:57

Đk : x >= -70

Đặt : \(\sqrt{x+70}=a\);  \(\sqrt{2x^2+4x+16}=b\)

=> 6x^2+10x-92 = 3b^2 - 2a^2

pt trở thành :

3b^2 - 2a^2 + ab = 0

<=> (3b^2+3ab)-(2ab+2a^2) = 0

<=> (a+b).(3b-2a) = 0

<=> a+b=0 hoặc 3b-2a = 0

<=> a=-b hoặc 2a=3b

Đến đó bạn tự thay vào mà làm nha

Tk mk nha

Bình luận (0)
MT
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
NN
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Bình luận (0)
NN
3 tháng 9 2023 lúc 9:43

nhầm

 

Bình luận (0)