a) \(\frac{x}{2}=\frac{y}{3}\) và \(x^2+y^2=52\)
b) \(\frac{x}{2}=\frac{y}{3}\) và x.y=54
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(a,\frac{x}{2}=\frac{y}{3}\)và x.y = 54
\(b,\frac{x}{5}=\frac{y}{3}\)và \(x^2-y^2=4\)(x, y >0)
Tìm các số x,y,z biết:
a)3.x=2.y,7.y=5.z và x-y+z=32
b)\(\frac{x}{2}\)=\(\frac{y}{3}\) và x.y=54
a Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\left(2\right)\)
Từ (1);(2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> x = 2 x 10 = 20
y = 2 x 15 = 30
z = 2 x 21 = 42
b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
=> x = 2k ; y = 3k
=> xy = 6.k2
=> 54 = 6.k2
=> k2 = 54 : 6 = 9
=> k = 3 hoặc k = -3
=> x = 3 x 2=6 hoặc x =( -3) x 2 = -6
y = 3 x 3 = 9 hoặc y = (-3) x 3 = -9
\(\text{a,Ta có:}\)\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\) \(\text{và}\)\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
\(\text{Áp dụng tính chất DTSBN có}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\text{Suy ra}:x=2.10=20;y=2.15=30;z=2.21=42\)
\(\text{Vậy }x=20;y=30;z=42\)
\(\text{b, Đặt }\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(\text{Theo đề, ta có}\)
\(xy=54\Rightarrow2k.3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k=3\text{hoặc }k=-3\)
\(\text{Suy ra: }x=2.3=6\text{hoặc}x=2.\left(-3\right)=-6\) \(y=3.3=9\text{ hoặc }y=-3.3=-9\)
\(\text{Vậy với k=3 }\Rightarrow x=6;y=9\)
\(\text{với k=-3\Rightarrow x=-6;y=-9}\)
1) Tìm x, biết:
a) x:2=y:5 và x+y=21
b) \(\frac{x}{2}=\frac{y}{2}\)và x.y=54
c) x:7=y:5 và y-x=12
2) Tím các số x, y, z, biết:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b) \(\frac{x}{3}=\frac{y}{4}\); \(\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=124
c) 3x=2y; 7y=5z và x-y+z=32
d) 2x=3x=5z và x+y-z=95
a) x/5=y/2
= x+y/5+2=21/7=3
=> x/5=3=>x=15
y/2=3=>x=6
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
Tìm x, y, z biết:
a) \(\frac{x}{2}\)=\(\frac{y}{3}\)và x.y = 54
b)\(\frac{5}{x}\)=\(\frac{3}{y}\)và x2 - y2 = 4
c) \(\frac{1+2y}{18}\)=\(\frac{1+4y}{24}\)=\(\frac{1+6y}{6x}\)
a,
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k,y=3k\)
=> xy = 2k3k = 6k2 = 54
=> k2 = 9
=> k = +-3
=> [x,y] = [-6;-9], [6;9]
b,
\(\frac{5}{x}=\frac{3}{y}\Leftrightarrow\frac{25}{x^2}=\frac{9}{y^2}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{25}{x^2}=\frac{9}{y^2}=\frac{25-9}{x^2-y^2}=\frac{16}{4}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\\y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\end{cases}}\)
c,
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
\(\Rightarrow\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{1+2y}{18}=\frac{1+2y+1+6y}{18+6x}=\frac{2+8y}{18+6x}=\frac{2\left[1+4y\right]}{2\left[9+3x\right]}=\frac{1+4y}{9+3x}\)
=> 24 = 9 + 3x
=> 3x = 15
=> x = 5
\(\frac{1+2y}{18}=\frac{1+4y}{24}\Leftrightarrow24\left[1+2y\right]=18\left[1+4y\right]\Leftrightarrow24+48y=18+72y\)
=> 24 + 48y - 18 = 72y
=> 6 + 48y = 72y
=> 6 = 24y
=> y = 1/4
1. Tìm x,y
a) \(\frac{x}{y}=5\) và x + y = 18
b) \(\frac{x}{17}=\frac{y}{2}\) và 2x - y = 64
c) 3x = 7y và x -y = -16
d) x= -2y và x + y = 10
e) \(\frac{x}{20}=\frac{y}{15}\) và y - x = 20
f) \(\frac{x}{-5}=\frac{y}{-6}\) và 3x + 2y = 51
g) \(\frac{x}{y}=\frac{1}{3}\) và \(x-3y=\frac{1}{2}\)
h) \(\frac{x}{3}=\frac{y}{7}\) và x + y = -20
i) x : y = 5 : 6 và 2x - 3y =1
j) \(\frac{x}{4}=\frac{y}{7}\) và x.y =112
k) -2x = 3y và x.y = -54
Bạn lần sau đăng ít thôi nhé :)
a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)
=> x = 15 , y = 3
b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)
=> x = 34, y = 4
c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)
=> x = -28 , y=-12
d,e,f,g,h tương tự.
i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)
Làm tương tự các câu còn lại.
j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)
xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)
Nếu k = 2 thì x = 8, y = 14
Nếu k = -2 thì x = -8 , y = -14
k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)
Làm tương tự câu j.
tìm x,y,x biết
a)\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)và 2x-3y+z=6
b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x.y+y.z+z.x=64
a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3
Tìm x,y,z
a, 2x=3y và \(x^2-y^2=25\)
b,3x=2y=5z và y - 2x =5
c,\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2x=28
d, 4x=5y và xy - 80 = 0
e, \(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}\)và y - x = 48
f,\(\frac{x}{2}=\frac{y}{3}\)và x.y = 54
trinh bày cách làm nữa nha
Bài 1: Tìm x, y biết
a, \(\frac{x}{2}\)=\(\frac{y}{3}\)và \(x.y=54\)
b, \(\frac{x}{y}\)=\(\frac{2}{3}\) và \(^{x^2+y^2=208}\) (x, y \(\varepsilon\)\(^{N^{\cdot}}\))
Bài 2: Chứng tỏ rằng từ\(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{ad}{cb}=\frac{a^2.b^2}{c^2.d^2}\)
Bài 3: Tìm x, y, z biết
a, \(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\)và x-y=15
b, \(10x=15y=6z\)và \(10x-5y+z=25\)
THANKS MỌI NGƯỜI NHA, AI NHANH NHẤT MK SẼ TIK ĐẦU TIÊN!!!
Đặt \(\frac{x}{2}=\frac{y}{3}=k\)\(\left(k\ne0\right)\)
=> x=2k , y =3k
x.y=54 => 2k.3k=54 => 6k^2=54
=> k=\(+-3\)
=> (x,y)=(6,9) = (-6,-9)
\(\frac{x}{2}=\frac{y}{3}\)và\(x.y=54\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{xy}{2}=\frac{y^2}{3}=\frac{54}{2}=27\)
\(\Rightarrow y^2=81\)
\(\Rightarrow\orbr{\begin{cases}y=9\\y=-9\end{cases}}\)
Với y=9 thì x=6
Với y=-9 thì x=-6