( 2x mũ 4-5x mũ 2 - 9x + 15 ) : ( x mũ 2 - 3 )
men nào cứu e vs
bài 1; sắp sếp các đa thức sau theo luỹ thừa giảm dần của biến và thực hiện phép tính chia
a, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
b, ( x mũ 3 + 2x mũ 4 - 5x mũ 2 - 3 - 3x ) : ( x mũ 2 - 3 )
c, ( 5x mũ 2 + 15 - 3x mũ 2 - 9x ) : ( 5 - 3x )
d, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
e, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
=0 bạn nha
tính nghiệm x) 1 mũ 2 -9x+8 2)3x mũ 2 -7x+4 3)2x mũ 2+5x-7 4) 3x mũ 2-9x+6 5)x mũ 2 +2x-3
1: x^2-9x+8=0
=>(x-1)(x-8)=0
=>x=1 hoặc x=8
2: 3x^2-7x+4=0
=>3x^2-3x-4x+4=0
=>(x-1)(3x-4)=0
=>x=4/3 hoặc x=1
3: 2x^2+5x-7=0
=>(2x+7)(x-1)=0
=>x=1 hoặc x=-7/2
4: 3x^2-9x+6=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
5: x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
`@` `\text {Answer}`
`\downarrow`
`1)`
\(x^2 - 9x + 8?\)
\(x^2-9x+8=0\)
`<=>`\(x^2-8x-x+8=0\)
`<=> (x^2 - 8x) - (x - 8) = 0`
`<=> x(x - 8) - (x-8) = 0`
`<=> (x-1)(x-8) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 8}`
`2)`
\(3x^2 - 7x + 4 =0\)
`<=> 3x^2 - 3x - 4x + 4 = 0`
`<=> (3x^2 - 3x) - (4x - 4) = 0`
`<=> 3x(x - 1) - 4(x - 1) = 0`
`<=> (3x - 4)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {4/3; 1}`
`3)`
\(2x^2 + 5x - 7=0\)
`<=> 2x^2 - 2x + 7x - 7 = 0`
`<=> (2x^2 - 2x) + (7x - 7) = 0`
`<=> 2x(x - 1) + 7(x - 1) = 0`
`<=> (2x+7)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`
`4)`
\(3x^2 - 9x + 6 = 0\)
`<=> 3x^2 - 3x - 6x + 6 = 0`
`<=> (3x^2 - 3x) - (6x - 6) = 0`
`<=> 3x(x - 1) - 6(x - 1) = 0`
`<=> (3x - 6)(x - 1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-6=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=6\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 2}.`
`5)`
\(x^2 + 2x - 3=0\)
`<=> x^2 + 3x - x - 3 = 0`
`<=> (x^2 - x) + (3x - 3) = 0`
`<=> x(x - 1) + 3(x - 1) = 0`
`<=> (x+3)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; -3}.`
a/ 4x mũ 2 - 6x. b/9x mũ 4 y mũ 3 + 3x mũ 2 y mũ 4. c/. x mũ 3 - 2x mũ 2 + 5x
`#3107`
`a.`
`4x^2 - 6x = 2x(2x - 3)`
`b.`
`9x^4y^3 + 3x^2y^4 = 3x^2y^2(3x^2y + y^2)`
`c.`
`x^3 - 2x^2 + 5x`
`= x(x^2 - 2x + 5)`
a) 4x² - 6x
= 2x(2x - 3)
b) 9x⁴y³ + 3x²y⁴
= 3x²y³(3x² + 3y)
c) x³ - 2x² + 5x
= x(x² - 2x + 5)
sắp sếp các đa thức sau theo luỹ thừa giảm dần và thực hiẹn phép tính chia
d, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
e, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )\
i, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
m, ( - x mũ 3 + x mũ 4 + x mũ 4 + x mũ 2 ) : ( x mũ 2 - 2x + 3 )
so sánh các đa thức sau theo luỹ thừa giảm dần của biến và thực hiện phép tính chia
d, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
e, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
i, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
m, ( - x mũ 3 + 3x + x mũ 4 + x mũ 2 ) : ( x mũ 2 - 2x + 3 )
sắp xếp các đa thức sau theo luỹ thừa giảm dần của biến rồi thực hiện phép tính chia
b, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
c, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
d, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
e, ( - 3x mũ 3 + 3x + x mũ 4 + x mũ 2 ) : ( x mũ 2 - 2x + 3 )
x mũ 3 - x mũ 2 +3x - 3 > 0
x mũ 3 + x mũ 2 + 9x + 9 < 0
4x mũ 3 - 14x mũ 2+ 6x - 21<0
men nào giúp mik vs
tối nay mik phải đi hok r
x mũ 3 - 3x mux 2 = 0
5x( x - 2020 ) - x + 2020=0
( 3x - 5 ) mũ 2 = ( x + 1 )mũ 2
( x mũ 2 - 2x) mũ 2 - 2 ( x - 1) mũ 2 + 2 = 0
giúp mik vs , men ơi
1) x3 - 3x2 = 0
<=> x2( x - 3 ) = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
2) 5x( x - 2020 ) - x + 2020 = 0
<=> 5x( x - 2020 ) - ( x - 2020 ) = 0
<=> ( x - 2020 )( 5x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2020=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{1}{5}\end{cases}}\)
3) ( 3x - 5 )2 = ( x + 1 )2
<=> ( 3x - 5 )2 - ( x + 1 )2 = 0
<=> [ ( 3x - 5 ) - ( x + 1 ) ][ ( 3x - 5 ) + ( x + 1 ) ] = 0
<=> ( 3x - 5 - x - 1 )( 3x - 5 + x + 1 ) = 0
<=> ( 2x - 6 )( 4x - 4 ) = 0
<=> \(\orbr{\begin{cases}2x-6=0\\4x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
4) ( x2 - 2x )2 - 2( x - 1 )2 + 2 = 0
<=> ( x2 - 2x )2 - 2( x2 - 2x + 1 ) + 2 = 0
<=> ( x2 - 2x )2 - 2x2 + 4x - 2 + 2 = 0
<=> ( x2 - 2x )2 - 2( x2 - 2x ) = 0
<=> ( x2 - 2x )( x2 - 2x - 2 ) = 0
<=> \(\orbr{\begin{cases}x^2-2x=0\\x^2-2x-2=0\end{cases}}\)
+) x2 - 2x = 0 <=> x( x - 1 ) = 0 <=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
+) x2 - 2x - 2 = 0
<=> x2 - 2x + 1 - 3 = 0
<=> ( x2 - 2x + 1 ) = 3
<=> ( x - 1 )2 = ( ±√3 )2
<=> \(\orbr{\begin{cases}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\)
Viết tổng thành tích ( xoắn 3 đại số )
1. 9x mũ 2 - 12xy + 4y mũ 2 - 3
2. x mũ 2 + 4x + 1
3. x mũ 2 - 4x + 7
4. x mũ 2 + 6x + 15
5. x mũ 2 - x + 1/3
6. 1/4x mũ 2 + x
7. 3x mũ 2 + 2x + 1
8. 2x mũ 2 - 2x + 1
9. 10a mũ 2 + 5b mũ 2 + 12ab + 4a - 6b + 15
M.n giúp e ak, e sẽ tick cho mọi người, e cảm ơn nhiều !!!!!