Những câu hỏi liên quan
1H
Xem chi tiết
H24
Xem chi tiết
HP
13 tháng 8 2021 lúc 15:01

1.

a, Phương trình có nghiệm khi: 

\(\left(m+2\right)^2+m^2\ge4\)

\(\Leftrightarrow m^2+4m+4+m^2\ge4\)

\(\Leftrightarrow2m^2+4m\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)

b, Phương trình có nghiệm khi:

\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)

\(\Leftrightarrow2m^2+6m\le0\)

\(\Leftrightarrow-3\le m\le0\)

Bình luận (0)
HP
13 tháng 8 2021 lúc 15:02

2.

a, Phương trình vô nghiệm khi:

\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)

\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)

\(\Leftrightarrow4m^2-7< 0\)

\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)

b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)

\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)

 Phương trình vô nghiệm khi:

\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)

\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)

\(\Leftrightarrow m^2-1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

Bình luận (0)
HP
13 tháng 8 2021 lúc 15:05

1.

c, \(\left(m+2\right)sin2x+mcos^2x=m-2+msin^2x\)

\(\Leftrightarrow\left(m+2\right)sin2x+m\left(cos^2x-sin^2x\right)=m-2\)

\(\Leftrightarrow\left(m+2\right)sin2x+mcos2x=m-2\)

Phương trình vô nghiệm khi:

\(\left(m+2\right)^2+m^2< \left(m-2\right)^2\)

\(\Leftrightarrow m^2+4m+4+m^2< m^2-4m+4\)

\(\Leftrightarrow m^2+8m< 0\)

\(\Leftrightarrow-8\le m\le0\)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 6 2019 lúc 8:18

Hướng dẫn giải:

Chọn A.

Ta có: sin2x – 2( m- 1)sinx. cosx – (m- 1).cos2x = m

Bình luận (0)
HB
Xem chi tiết
PB
Xem chi tiết
CT
4 tháng 11 2017 lúc 14:50

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 1 2018 lúc 12:08

Đáp án B

Phương pháp:

Sử dụng phương pháp hàm số để giải phương trình.

Cách giải :

s inx 2019 − cos 2 x 2018 − cos x + m 2019 − sin 2 x + m 2 + 2 m cos x 2018 = cos x − s inx + m

f ' t = 2018 + t 2 2018 − 1 + t . 1 2018 2018 + t 2 − 2017 2018 .2 t ≥ 0 ∀ t ∈ − 1 ; 1   Suy   ra  

Bình luận (0)
HH
Xem chi tiết
NC
27 tháng 8 2021 lúc 20:50

1, Phương trình tương đương

\(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)

⇔ \(sin\left(2x-\dfrac{\pi}{6}\right)=1\)

⇔ \(2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k.2\pi\)

⇔ x = \(\dfrac{\pi}{3}+k.\pi\)

2, \(2cos3x+3sin3x-2\)

\(\sqrt{13}\)\((\dfrac{2}{\sqrt{13}}cos3x+\dfrac{3}{\sqrt{13}}sin3x)\) - 2

Do \(\left(\dfrac{2}{\sqrt{13}}\right)^2+\left(\dfrac{3}{\sqrt{13}}\right)^2=1\) nên tồn tại 1 góc a sao cho \(\left\{{}\begin{matrix}sina=\dfrac{2}{\sqrt{13}}\\cosa=\dfrac{2}{\sqrt{13}}\end{matrix}\right.\)

BT = \(\sqrt{13}sin\left(x+a\right)-2\)

Do - 1 ≤ sin (x + a) ≤ 1 với mọi x và a

⇒ \(-\sqrt{13}-2\le BT\le\sqrt{13}-2\)

⇒ \(-5,6< BT< 1,6\)

Vậy BT nhận 5 giá trị nguyên trong tập hợp S = {-5 ; -4 ; -3 ; -2 ; -1}

3. \(msinx-cosx=\sqrt{5}\)

⇔ \(\dfrac{m}{\sqrt{m^2+1}}.sinx-\dfrac{1}{\sqrt{m^2+1}}.cosx=\dfrac{\sqrt{5}}{\sqrt{m^2+1}}\)

⇔ sin(x - a) = \(\sqrt{\dfrac{5}{m^2+1}}\) với \(\left\{{}\begin{matrix}sina=\dfrac{1}{\sqrt{m^2+1}}\\cosa=\dfrac{m}{\sqrt{m^2+1}}\end{matrix}\right.\)

Điều kiện có nghiệm : \(\left|\sqrt{\dfrac{5}{m^2+1}}\right|\le1\)

⇔ m2 + 1 ≥ 5 

⇔ m2 - 4 ≥ 0

⇔ \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Bình luận (0)
NC
Xem chi tiết
NT
Xem chi tiết
NL
25 tháng 12 2020 lúc 13:22

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\) 

Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)

\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)

Bình luận (0)