\(x=\sqrt[3]{15+3\sqrt{22}}+\sqrt[3]{15-3\sqrt{22}}\) tính gt biểu thức \(D=x^3-9x+1981\)
\(x=\sqrt[3]{15-3\sqrt{22}}+\sqrt[3]{15+3\sqrt{22}}\)
Cho biểu thức \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm điều kiện xác định của \(A\)
b) Tính giá trị của biểu thức \(A\) khi \(x=0\)
c) Rút gọn biểu thức \(A\)
d) Tìm \(x\) để \(A=-\dfrac{8}{5}\)
e) Tìm \(x\) để \(A=\sqrt{x}-\dfrac{18}{5}\)
f) Tìm điều kiện của \(x\) để \(A< 0\)
g) Tìm điều kiện của \(x\) để \(A>0\)
h) Tìm tập hợp các số tự nhiên \(x\) để \(A>0\)
k) Chứng minh rằng \(A>-5\)
m) Tìm điều kiện của \(x\) để\(A>-3\)
n*) Tìm giá trị lớn nhất của biểu thức \(A\)
p*) Xét biểu thức \(M=A-\dfrac{27}{\sqrt{x}+3}\). Tìm giá trị nhỏ nhất của biểu thức \(M\)
q*) Tìm các số tự nhiên \(x\) để \(A\) là số nguyên
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Thay x=0 vào A, ta được:
\(A=\dfrac{15\cdot\sqrt{0}-11}{0+2\sqrt{0}-3}-\dfrac{3\sqrt{0}-2}{\sqrt{0}-1}-\dfrac{2\sqrt{0}+3}{\sqrt{0}+3}\)
\(=\dfrac{-11}{-3}-\dfrac{-2}{-1}-\dfrac{3}{3}\)
\(=\dfrac{11}{3}-2-1\)
\(=\dfrac{11}{3}-\dfrac{9}{3}=\dfrac{2}{3}\)
rút gọn P=\(\dfrac{-22+5\sqrt{x}-x}{x+2\sqrt{x}-15}+\dfrac{3\sqrt{x}-1}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\left(x\ge0,x\ne9\right)\)
\(P=\dfrac{-x+5\sqrt{x}-22}{x+2\sqrt{x}-15}+\dfrac{3\sqrt{x}-1}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\)
\(=\dfrac{-x+5\sqrt{x}-22}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{3\sqrt{x}-1}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\)
\(=\dfrac{-x+5\sqrt{x}-22+\left(3\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-x+5\sqrt{x}-22+3x-10\sqrt{x}+3-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-5\sqrt{x}+6}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+5}\)
Cho biểu thức \(G=\frac{-22+5\sqrt{x}-x}{x+2\sqrt{x}-15}+\frac{3\sqrt{x}-1}{\sqrt{x}+5}-\frac{\sqrt{x}-5}{\sqrt{x}-3}\)
a/ Rút gọn G
b/ Tìm tất cả các giá trị của x để G có giá trị nguyên
1. Cho biểu thức : A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\).
a) Rút gọn A.
b) Tìm x để A < 0.
2. Cho biểu thức: B = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\).
a) Rút gọn B.
b) Tìm x để B = \(\dfrac{1}{2}\)
c) Tìm x để B > 0.
3. a) Tìm GTLN của biểu thức: A = \(\dfrac{1}{x-\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức: B = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\).
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
a) Tính giá trị biểu thức:
N=\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
b)Rút gọn biểu thức:
A=\(\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\),trị x>2
Cho \(x=\dfrac{\sqrt[3]{26+15\sqrt{3}}.\left(2-\sqrt{3}\right)}{\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}}\). Tính giá trị của biểu thức: \(M=\left(3x^3-x^2-1\right)^{2021}\)
\(x=\dfrac{\sqrt[3]{\left(2+\sqrt{3}\right)^3}\left(2-\sqrt{3}\right)}{\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}}=\dfrac{1}{\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}}\)
Đặt \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)\(\Leftrightarrow A^3=18+3\sqrt[3]{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow A^3=18+3A\sqrt[3]{1}\\ \Leftrightarrow A^3-3A-18=0\\ \Leftrightarrow A=3\\ \Leftrightarrow X=\dfrac{1}{3}\\ \Leftrightarrow Q=\left[3\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{3}\right)^2-1\right]^{2021}=\left(\dfrac{1}{9}-\dfrac{1}{9}-1\right)^{2021}=\left(-1\right)^{2021}=-1\)
BÀI 1: Rút gọn các biểu thức sau:
1)\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)
2)\(4\sqrt{\frac{25x}{4}}-\frac{8}{3}\sqrt{\frac{9x}{4}}-\frac{4}{3x}\sqrt{\frac{9x^3}{64}}\) với x > 0
BÀI 2: Giải các phương trình sau:
\(\sqrt{x^2-x+\frac{1}{4}}=2x-1\)
BÀI 3:
a) Tính giá trị biểu thức A = \(\frac{x-4}{\sqrt{x}+3}\) với x = 5
b) Rút gọn biểu thức B= \(\frac{\sqrt{x}-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+2}\) với điều kiện x > 0
c) Biết C= A.B. So sánh C với 1.
BÀI 4: Giải phương trình \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x+2\sqrt{x-1}}=-2\)
Cho 4y > 9x > 0 và 9\(\sqrt{\frac{x}{y}}\)+ 4\(\sqrt{\frac{y}{x}}\)= 20
Tính giá trị của biểu thức A = \(\frac{3\sqrt{x}-2\sqrt{y}}{3\sqrt{x}+2\sqrt{y}}\)