Những câu hỏi liên quan
PN
Xem chi tiết
NL
29 tháng 9 2020 lúc 22:28

a. Cho \(x=1\) ta được:

\(\left(1+1+2\right)^{10}=a_0+a_1+a_2+...+a_{20}\)

\(\Rightarrow S_1=4^{10}\)

b. Cho \(x=2\) ta được:

\(\left(1+2+8\right)^{10}=a_0+a_1.2+a_2.2^2+...+a_{20}.2^{20}\)

\(\Rightarrow S_2=11^{10}\)

c.

\(\left(1+x+2x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x+2x^2\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i.2^ix^{i+k}\)

Số hạng chứa \(\Rightarrow\left\{{}\begin{matrix}i+k=17\\0\le i\le k\le10\end{matrix}\right.\)

\(\Rightarrow\left(i;k\right)=\left(7;10\right);\left(8;9\right)\)

\(\Rightarrow a_{17}=C_{10}^{10}C_{10}^7.2^7+C_{10}^9.C_9^8.2^8=...\)

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
PH
18 tháng 12 2016 lúc 18:25

3-2+1+2-1+1=4 -> tổng trên = 4^5=1024

Bình luận (0)
HL
Xem chi tiết
IC
Xem chi tiết
H24
15 tháng 1 2017 lúc 13:42

\(a_1+a_3+...+a_{39}=???\)

Bình luận (0)
AN
15 tháng 1 2017 lúc 11:50

Ta có: \(\left(3x^8-2x^6+x^5+2x-x^2+1\right)^5=a_0+a_1x+...+a_{40}x^{40}\)

Từ khai triển này ta thay x = 1 vào thì được

\(a_0+a_1+...+a_{40}=\left(3-2+1+2-1+1\right)^5=4^5=1024\)

Bình luận (0)
TD
15 tháng 1 2017 lúc 21:29

Anh xin trả lời câu của bạn ngonhuminh:

\(a_0+a_1+...+a_{40}=P\left(1\right)=1024\)

\(a_0-a_1+a_2-...+a_{40}=P\left(-1\right)=32\)

Trừ 2 điều trên cho nhau vế theo vế rồi chia 2 được:

\(a_1+a_3+...+a_{39}=\frac{1024+32}{2}=528\)

Bình luận (0)
VT
Xem chi tiết
BB
Xem chi tiết
H24
10 tháng 9 2023 lúc 14:33

Để tính giá trị của biểu thức S, chúng ta có thể sử dụng công thức khai triển nhị thức Newton. Công thức này cho phép chúng ta tính toán các hệ số a0, a1, a2,..., a11 trong biểu thức (1+x+x^2+...+x^10)^11.

Công thức khai triển nhị thức Newton: (a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)b^1 + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1b^(n-1) + C(n,n)a^0b^n

Trong đó, C(n,k) là tổ hợp chập k của n (n choose k), được tính bằng công thức C(n,k) = n! / (k!*(n-k)!).

Áp dụng công thức khai triển nhị thức Newton vào biểu thức (1+x+x^2+...+x^10)^11, ta có:

S = C(11,0)*a0 - C(11,1)*a1 + C(11,2)*a2 - C(11,3)*a3 + ... + C(11,10)*a10 - C(11,11)*a11

Bây giờ, để tính giá trị của S, chúng ta cần tính các hệ số a0, a1, a2,..., a11. Để làm điều này, chúng ta có thể sử dụng công thức C(n,k) để tính các hệ số từng phần tử trong biểu thức (1+x+x^2+...+x^10)^11.

Tuy nhiên, để viết bài giải ngắn nhất có thể, ta có thể sử dụng một số tính chất của tổ hợp chập để rút gọn công thức. Chẳng hạn, ta có các quy tắc sau:

C(n,k) = C(n,n-k) (đối xứng)C(n,0) = C(n,n) = 1C(n,1) = C(n,n-1) = n

Áp dụng các quy tắc trên vào công thức của S, ta có:

S = a0 - 11a1 + 55a2 - 165a3 + ... + 330a10 - a11

Với công thức trên, ta chỉ cần tính 11 hệ số a0, a1, a2,..., a10, a11 và thực hiện các phép tính nhân và cộng trừ để tính giá trị của S.

Bình luận (0)
XG
Xem chi tiết
NN
Xem chi tiết
PD
Xem chi tiết
NL
4 tháng 1 2021 lúc 17:47

\(S_0=a_0+a_1+...+a_{16}=f\left(1\right)=1\)

Số hạng tổng quát trong khai triển:

\(\sum\limits^8_{k=0}C_8^k\left(x^2+2x\right)^k\left(-2\right)^{8-k}=\sum\limits^8_{k=0}C_8^k\left(-2\right)^{8-k}\sum\limits^k_{i=0}C_k^ix^{2i}\left(2x\right)^{k-i}\)

\(=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-2\right)^{8-k}2^{k-i}x^{i+k}\)

Số hạng không chứa x thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=0\end{matrix}\right.\)

\(\Rightarrow i=k=0\Rightarrow a_0=C_8^0C_0^0\left(-2\right)^82^0=2^8\)

Số hạng chứa \(x^{16}\) thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=16\end{matrix}\right.\)

\(\Rightarrow i=k=8\Rightarrow a_{16}=C_8^8C_8^8\left(-2\right)^0.2^0=1\)

\(\Rightarrow S=S_0-\left(a_0+a_{16}\right)=-2^8\)

Bình luận (0)