Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

PD

Viết đa thức \(f\left(x\right)=\left(x^2+2x-2\right)^8\) dưới dạng \(f\left(x\right)=a_0+a_1x+a_2x^2+...+a_{16}x^{16}\). Tính tổng \(S=a_1+a_3+...+a_{15}\)

NL
4 tháng 1 2021 lúc 17:47

\(S_0=a_0+a_1+...+a_{16}=f\left(1\right)=1\)

Số hạng tổng quát trong khai triển:

\(\sum\limits^8_{k=0}C_8^k\left(x^2+2x\right)^k\left(-2\right)^{8-k}=\sum\limits^8_{k=0}C_8^k\left(-2\right)^{8-k}\sum\limits^k_{i=0}C_k^ix^{2i}\left(2x\right)^{k-i}\)

\(=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-2\right)^{8-k}2^{k-i}x^{i+k}\)

Số hạng không chứa x thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=0\end{matrix}\right.\)

\(\Rightarrow i=k=0\Rightarrow a_0=C_8^0C_0^0\left(-2\right)^82^0=2^8\)

Số hạng chứa \(x^{16}\) thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=16\end{matrix}\right.\)

\(\Rightarrow i=k=8\Rightarrow a_{16}=C_8^8C_8^8\left(-2\right)^0.2^0=1\)

\(\Rightarrow S=S_0-\left(a_0+a_{16}\right)=-2^8\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PD
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
BB
Xem chi tiết
TC
Xem chi tiết
NV
Xem chi tiết