Những câu hỏi liên quan
DD
Xem chi tiết
NT
25 tháng 9 2020 lúc 20:02

Ta có: \(n^2+7n+22\)

\(=n^2+7n+10+12\)

\(=\left(n+5\right)\left(n+2\right)+12\)

Do hiệu của n+5 và n+2 là 3 nên để biểu thức \(n^2+7n+22⋮9\) thì n+5 và n+2 phải cùng chia hết 3 hoặc không cùng chia hết cho 3

-Trường hợp 1: Nếu n+5 và n+2 cùng chia hết cho 3 thì \(\left(n+5\right)\left(n+2\right)⋮9\)

\(12⋮̸9\)

nên \(\left(n+5\right)\left(n+2\right)+12⋮̸9\)

\(\Rightarrow n^2+7n+22⋮̸9\)

-Trường hợp 2: Nếu n+5 và n+2 không cùng chia hết cho 3 thì \(\left(n+5\right)\left(n+2\right)⋮̸3\)

\(12⋮3\)

nên \(\left(n+5\right)\left(n+2\right)+12⋮̸3\)

\(\Rightarrow n^2+7n+22⋮̸9\)

Vậy: Với \(n\in N\) thì \(n^2+7n+22⋮̸9\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KN
11 tháng 8 2020 lúc 20:07

a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)

*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)

\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)

Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9

*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3

Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9

Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)

b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)

*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)

\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)

Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169

*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13

Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169

Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 8 2020 lúc 20:12

a) G/s phản chứng \(n^2+7n+22⋮9\)

=> \(n^2+4n+4+\left(3n+18\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)

=> \(\left(n+2\right)^2⋮3\)

=> \(\left(n+2\right)^2⋮9\)

Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\) 

=> \(3n⋮9\)

=> \(n⋮3\)

Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3

=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9

=> Điều giả sử là sai

=> TA CÓ ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 8 2020 lúc 20:19

b) Ta ttu g/s phản chứng \(n^2-5n-49⋮169\)

=> \(\left(n+4\right)^2-13n-65⋮13\)     (1)

Dễ thấy \(13n+65=13\left(n+5\right)⋮13\)

=> \(\left(n+4\right)^2⋮13\)

=> \(\left(n+4\right)^2⋮169\)(2)

TỪ (1) VÀ (2) THÌ: \(13\left(n+5\right)⋮169\)

=> \(n+5⋮13\)

=> \(n^2-25⋮13\)(3)

Và cx => \(5n+25⋮13\)(4)

(3); (4) => \(n^2-5n-50⋮13\)

=> \(n^2-5n-49-1⋮13\)

Mà: \(n^2-5n-49⋮13\)

=> \(1⋮13\)

NHG ĐÂY LÀ 1 ĐIỀU VÔ LÍ

=> ĐIỀU GIẢ SỬ LÀ SAI

=> TA CÓ ĐPCM.

Bình luận (0)
 Khách vãng lai đã xóa
TS
Xem chi tiết
NH
21 tháng 10 2015 lúc 19:41

2009^2010đồng dư với 1 (theo mod 2010)

Bình luận (0)
DT
Xem chi tiết
LV
5 tháng 4 2017 lúc 21:51

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

Bình luận (2)
H24
Xem chi tiết
TL
Xem chi tiết
NC
2 tháng 4 2020 lúc 16:44

G/s: A = \(n^2+7n+7⋮49\)

=> \(n^2⋮49\)

=> \(n⋮7\)

Đặt : n = 7 k 

Khi đó: \(A=49k^2+49k+7⋮49\)

=> \(7⋮49\) vô lí 

=> Điều g/s là sai 

Vậy A không thể chia hết cho 49.

Bình luận (0)
 Khách vãng lai đã xóa
TL
3 tháng 4 2020 lúc 16:16

cảm ơn bn nhìu

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
LW
14 tháng 4 2017 lúc 23:20

ai thèm trả lời câu hỏi của thằng troll làm j???

Bình luận (0)
TH
15 tháng 4 2017 lúc 5:46

đây nha bạn: CMR: n^2+7n+22 không chia hết cho 9? | Yahoo Hỏi & Đáp

Bình luận (0)
NL
Xem chi tiết
HN
7 tháng 3 2017 lúc 16:09

Vì trong tổng n2 +7n + 22 có số 22 không chia hết cho 9 nên tổng này không chia hết cho 9

Bình luận (0)
NL
7 tháng 3 2017 lúc 16:14

Mạc dù vậy nhưng nếu n2+7n chi cho 9 dư 5 thì tổng vẫn chia hết cho 9

Bình luận (0)
NT
7 tháng 3 2017 lúc 16:18

ta có: 4(n2+7n+22)=(2n+7)2+39

nếu (2n+7) chia hết cho 3 => (2n+7)chia hết cho 9 => (2n+7)2 không chia hết cho 9

nếu 2n+7 ko chia hết cho 3 =>(2n+7)ko chia hết cho 9 => (2n+7)2+39 ko chia hết cho 9

=>n2+7n+22 ko chia hết cho 9 với mọi n thuộc Z

Bình luận (0)
LD
Xem chi tiết
NL
31 tháng 8 2016 lúc 21:52

mình chỉ làm đc ý thứ nhất thui

bạn cần phân tích n^2+7n+22=(n+2)(n+5)+12 
xét hiệu n+5-(n+2)=3chia hết cho 3 
=>n+5và n+2 có cùng số dư khi chia cho 3 
+xét n+5 và n+2 có cùng số dư khác 0: 
=>(n+5)(n+2) không chia hết cho 3 
12 chia hết cho 3=>(n+2)(n+5)+12 không chia hết cho 3 
+xét n+5 và n+2 cùng chia hết cho 3 
=>(n+5)(n+2) chia hết cho 9 
12 không chia hết cho 9=>(n+5)(n+2)+12 không chia hết cho 9 
phần sau làm tương tự tách n^2-5n-49=(n-9)(n+4)-13 

Bình luận (0)
NM
31 tháng 8 2016 lúc 22:25

Lớp 8 là em xin quỳ

Bình luận (0)