Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 8

DD

Chứng minh rằng với mọi n\(\in\)N thì \(n^2+7n+22\) không chia hết cho 9

NT
25 tháng 9 2020 lúc 20:02

Ta có: \(n^2+7n+22\)

\(=n^2+7n+10+12\)

\(=\left(n+5\right)\left(n+2\right)+12\)

Do hiệu của n+5 và n+2 là 3 nên để biểu thức \(n^2+7n+22⋮9\) thì n+5 và n+2 phải cùng chia hết 3 hoặc không cùng chia hết cho 3

-Trường hợp 1: Nếu n+5 và n+2 cùng chia hết cho 3 thì \(\left(n+5\right)\left(n+2\right)⋮9\)

\(12⋮̸9\)

nên \(\left(n+5\right)\left(n+2\right)+12⋮̸9\)

\(\Rightarrow n^2+7n+22⋮̸9\)

-Trường hợp 2: Nếu n+5 và n+2 không cùng chia hết cho 3 thì \(\left(n+5\right)\left(n+2\right)⋮̸3\)

\(12⋮3\)

nên \(\left(n+5\right)\left(n+2\right)+12⋮̸3\)

\(\Rightarrow n^2+7n+22⋮̸9\)

Vậy: Với \(n\in N\) thì \(n^2+7n+22⋮̸9\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DD
Xem chi tiết
LG
Xem chi tiết
DN
Xem chi tiết
KT
Xem chi tiết
BB
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
HN
Xem chi tiết