Những câu hỏi liên quan
DQ
Xem chi tiết
HS
22 tháng 9 2019 lúc 16:55

1. Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)=> \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x+2y-3z}{2+6-15}=\frac{77}{-7}=-11\)

=> \(\hept{\begin{cases}\frac{x}{2}=-11\\\frac{y}{3}=-11\\\frac{z}{5}=-11\end{cases}}\)=> \(\hept{\begin{cases}x=-22\\y=-33\\z=-55\end{cases}}\)

2. Ta có : \(2x=3y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{1}{2}-\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{11}{30}}=-90\)

=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=-90\\\frac{y}{\frac{1}{3}}=-90\\\frac{z}{\frac{1}{5}}=-90\end{cases}}\)=> \(\hept{\begin{cases}x=-45\\y=-30\\z=-18\end{cases}}\)

Bình luận (0)
H24
Xem chi tiết
KR
16 tháng 8 2023 lúc 14:56

`@` `\text {Ans}`

`\downarrow`

`5,`

Ta có:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{3}=\dfrac{2y}{10}=\dfrac{3z}{18}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot3=-9\\y=-3\cdot5=-15\\z=-3\cdot6=-18\end{matrix}\right.\)

Vậy, `x = -9; y = -15; z = -18.`

Bình luận (0)
H24
Xem chi tiết
NP
29 tháng 9 2018 lúc 15:55

ta có: \(\frac{x}{\frac{y}{z}}=\frac{3}{\frac{4}{5}}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}.\)

ADTCDTSBN

...

bn tu lm tiep nha

Bình luận (0)
H24
29 tháng 9 2018 lúc 16:04

mà bạn nguyen nguyen ơi, x/3 phải bằng x^2/3*x chứ

Bình luận (0)
H24
29 tháng 9 2018 lúc 16:06

không thể bình phương tử và mẫu bạn nha

VD : 2/3 không thể bằng 4/9

Bình luận (0)
NH
Xem chi tiết
AH
30 tháng 11 2023 lúc 11:08

Lời giải:

Đặt $\frac{x}{5}=\frac{y}{-3}=\frac{z}{2}=k\Rightarrow x=5k; y=-3k; z=2k$
Khi đó:

$x+2y-3z=10$

$\Rightarrow 5k+2(-3k)-3(2k)=10$

$\Rightarrow 5k-6k-6k=10$

$\Rightarrow -7k=10\Rightarrow k=\frac{-10}{7}$

$x=5k=\frac{-50}{7}; y=-3k=\frac{30}{7}; z=2k=\frac{-20}{7}$

Bình luận (0)
NP
25 tháng 12 2024 lúc 20:45

5+2*(-3)-(-3*2)

5+(-6)-6

-1-6

=-7 

 

Bình luận (0)
BT
Xem chi tiết
BT
Xem chi tiết
TD
20 tháng 8 2016 lúc 13:58

khó hiểu wa

Bình luận (0)
BT
20 tháng 8 2016 lúc 14:02

khó mới hỏi

Bình luận (0)
BT
Xem chi tiết
DY
Xem chi tiết
NT
7 tháng 1 2024 lúc 9:49

1: Ta có: \(\dfrac{x}{3}=\dfrac{y}{6}\)

mà 4x-y=42

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{4x-y}{4\cdot3-6}=\dfrac{42}{12-6}=\dfrac{42}{6}=7\)

=>\(x=7\cdot3=21;y=6\cdot7=42\)

2: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x-2y+3z=33

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{2-6+15}=\dfrac{33}{11}=3\)

=>\(x=3\cdot2=6;y=3\cdot3=9;z=3\cdot5=15\)

3: \(\dfrac{x}{y}=\dfrac{6}{5}\)

=>\(\dfrac{x}{6}=\dfrac{y}{5}\)

mà x+y=121

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{x+y}{6+5}=\dfrac{121}{11}=11\)

=>\(x=11\cdot6=66;y=11\cdot5=55\)

Bình luận (0)
HM
Xem chi tiết
LL
27 tháng 8 2021 lúc 13:56

\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)

\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)

\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)

\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)

\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)

Bình luận (1)
NT
27 tháng 8 2021 lúc 14:02

a: \(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\left(3x-y\right)\cdot\left(3x+y\right)=9x^2-y^2\)

b: \(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\cdot\dfrac{1}{2}\)

\(=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\)

\(=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)

c: \(\left(5y-3x\right)\cdot\dfrac{1}{4}\cdot\left(12x+20y\right)\)

\(=\left(5y-3x\right)\left(5y+3x\right)\)

\(=25y^2-9x^2\)

d: \(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(\dfrac{3}{2}y+x\right)\cdot2\)

\(=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)\)

\(=\dfrac{9}{4}y^2-x^2\)

e: \(\left(a+b+c\right)\left(a+b-c\right)\)

\(=\left(a+b\right)^2-c^2\)

\(=a^2+2ab+b^2-c^2\)

Bình luận (0)