Cho \(x=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
Tính giá trị biểu thức f(x)=x3+2x
cho x= \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
Tính giá trị của biểu thức f(x)= x^3+3x
\(x=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\Rightarrow x^3=5\sqrt{2}+7-\left(5\sqrt{2}-7\right)-3\sqrt[3]{\left(5\sqrt{2}\right)^2-7^2}.x\)
\(=14-3.\sqrt[3]{50-49}.x=14-3x\)
\(\Rightarrow x^3=14-3x\Rightarrow x^3+3x=14\)
a) Cho x = \(\frac{\sqrt[3]{10+6\sqrt{3}}\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)Tính giá trị biểu thức: A = \(\left(x^3-4x+1\right)^{2018}\)
b) Cho x = \(\sqrt[3]{7+5\sqrt{2}}-\frac{1}{\sqrt[3]{7+5\sqrt{2}}}\)Tính giá trị biểu thức: B = \(\left(x^3+3x-14\right)^{2018}\)
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
Cho biểu thức \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\) với x > 0
a, Rút gọn biểu thức P
b, Tính giá trị của biểu thức P khi \(x=\dfrac{\sqrt{3-\sqrt{2}}+\sqrt{6-2\sqrt{7}}}{\sqrt{3+\sqrt{2}}}\)
`a)P=(x^2+sqrtx)/(x-sqrtx+1)-(2x+sqrtx)/sqrtx`
`P=(sqrtx(sqrtx+1)(x-sqrtx+1))/(x-sqrtx+1)-(sqrtx(2sqrtx+1))/sqrtx`
`P=x+sqrtx-2sqrtx-1`
`P=x-sqrtx-1`
a: Ta có: \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
\(=x+\sqrt{x}-2\sqrt{x}-1\)
\(=x-\sqrt{x}-1\)
cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right)\):\(\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
1. Rút gọn biểu thức P
2. Tính giá trị của P biết x=\(\sqrt{7+4\sqrt{3}}\)+\(\sqrt{7-4\sqrt{3}}\)
\(1,P=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(dkxd:x\ge0,x\ne9\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-1-2\sqrt{x}+6}\)
\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}}{-\sqrt{x}+5}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}}{5-\sqrt{x}}\)
\(=-\dfrac{x}{5-\sqrt{x}}\)
\(2,x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)
\(=2+\sqrt{3}+2-\sqrt{3}=4\)
\(x=4\Rightarrow P=-\dfrac{4}{5-\sqrt{4}}=\dfrac{-4}{5-2}=-\dfrac{4}{3}\)
1)Giai phương trình
a) (2\(\sqrt{x}\)+3)(\(\sqrt{x}\)-1)-5= 2x-4
b) x\(\sqrt{x}\)-8 = 3\(\sqrt{x}\) (\(\sqrt{x}\)-2)
2) Cho biểu thức: M= 2y-3x\(\sqrt{y}\) + x2
a) Phân tích M thành nhân tử
b) Tính giá trị M khi x = 2; y= \(\dfrac{18}{4+\sqrt{7}}\)
2
\(M=2y-3x\sqrt{y}+x^2=y-2x\sqrt{y}+x^2+y-x\sqrt{y}\\ =\left(\sqrt{y}-x\right)^2+\sqrt{y}\left(\sqrt{y}-x\right)\\ =\left(\sqrt{y}-x\right)\left(\sqrt{y}-x+\sqrt{y}\right)\\ =\left(\sqrt{y}-x\right)\left(2\sqrt{y}-x\right)\)
b
\(y=\dfrac{18}{4+\sqrt{7}}=\dfrac{18\left(4-\sqrt{7}\right)}{16-7}=\dfrac{72-18\sqrt{7}}{9}=\dfrac{72}{9}-\dfrac{18\sqrt{7}}{9}=8-2\sqrt{7}\\ =7-2\sqrt{7}.1+1=\left(\sqrt{7}-1\right)^2\)
Thế x = 2 và y = \(\left(\sqrt{7}-1\right)^2\) vào M được:
\(M=2\left(\sqrt{7}-1\right)^2-3.2.\sqrt{\left(\sqrt{7}-1\right)^2}+2^2\\ =2\left(8-2\sqrt{7}\right)-6.\left(\sqrt{7}-1\right)+4\\ =16-4\sqrt{7}-6\sqrt{7}+6+4\\ =26-10\sqrt{7}\)
1:
a: =>2x-2căn x+3căn x-3-5=2x-4
=>căn x-8=-4
=>căn x=4
=>x=16
b: \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)-3\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>(căn x-2)(x-căn x+4)=0
=>căn x-2=0
=>x=4
Cho biểu thức A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3};B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\) với x ≥ 0;x ≠ 1;x ≠ 9
a, Tính giá trị biểu thức A khi x = 16
b,Chứng minh rằng: B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
c, Tìm các giá trị x để \(\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\)
\(a,x=16\Rightarrow A=\dfrac{\sqrt{16}+2}{\sqrt{16}-3}=\dfrac{4+2}{4-3}=6\)
\(b,B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\left(dk:x\ge0,x\ne1,x\ne9\right)\\ =\dfrac{\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-7\right)}{x-1}\\ =\dfrac{x+4\sqrt{x}-5-\sqrt{x}+7}{x-1}\\ =\dfrac{x+3\sqrt{x}+2}{x-1}\\ =\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(dpcm\right)\)
\(c,\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-3}:\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\le\dfrac{x}{\sqrt{x}-3}\)
\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-3}.\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\le\dfrac{x}{\sqrt{x}-3}\)
\(\Leftrightarrow4-\dfrac{x}{\sqrt{x}-3}\le0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-12-x}{\sqrt{x}-3}\le0\)
\(\Leftrightarrow\) Pt vô nghiệm
Vậy không có giá trị x thỏa yêu cầu đề bài.
Cho \(x=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}.\)Tính giá trị của biểu thức A=x2-2x-2
Ta có:
\(x=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\) ( x> 0 )
\(\Rightarrow x^2=6+2\sqrt{\left(3+\sqrt{5+2\sqrt{3}}\right)\left(3-\sqrt{5+2\sqrt{3}}\right)}\)
\(=6+2\sqrt{9-5-2\sqrt{3}}\)
\(=6+2\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=6+2\sqrt{3}-2=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)
\(\Rightarrow x=\sqrt{3}+1\)
Vậy :
\(A=x^2-2x-2=4+2\sqrt{3}-2\sqrt{3}-2-2\)
\(=0\)
Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\) và \(B=\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\) với x>0, x≠4. Tìm x sao cho \(\dfrac{B}{A}\)nhận giá trị là một số nguyên.
1.
a.Cho biểu thức \(N=\frac{\sqrt{x}+\sqrt{7}}{\sqrt{x}-7}\) . Với giá trị nào của x thì biểu thức N xác định
b.Khử mẩu của biểu thức lấy căn \(\sqrt{\frac{-5}{3x}}\)(x khác 0)
c. Tính \(\sqrt{\sqrt{3}-\sqrt{1-\sqrt{21}-12\sqrt{3}}}\)
2.
a. Rút gọn biểu thức
b.Tính giá trị của biểu thức \(2\sqrt{60}-15\sqrt{\frac{3}{5}}+\left(\sqrt{3}-\sqrt{5}\right)\sqrt{3}-\frac{4\sqrt{5}}{\sqrt{3}-\sqrt{7}}\)
3. Cho biểu thức \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\sqrt{x}+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)\(\left(x\ge0\right)\left(x\ne0\right)\)
a. Rút gọn
b.Tìm tất cả các giá trị của x để \(P< -\frac{1}{3}\)