Những câu hỏi liên quan
BB
Xem chi tiết
SD
19 tháng 1 2021 lúc 21:03

Ta có: \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\) B nhỏ nhất khi \(4x^2-6x+1\)có giá trị nhỏ nhất

Mà: \(4x^2-6x+1=4\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)-\dfrac{5}{4}=4\left(x-\dfrac{3}{4}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

\(\Rightarrow\min\limits_{\left(4x^2-6x+1\right)}=\dfrac{-5}{4}.\)  khi \(x=\dfrac{3}{4}\)

\(\Rightarrow\left(2x-1\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\min\limits_B=\dfrac{-5}{4}:\dfrac{1}{4}=\dfrac{-5}{4}.4=-5\)  Khi \(x=\dfrac{3}{4}\)

 

Bình luận (0)
OH
21 tháng 1 2021 lúc 20:07

Ta có: (2x−1)2≥0(2x−1)2≥0

⇒⇒ B nhỏ nhất khi 4x2−6x+14x2−6x+1có giá trị nhỏ nhất

Mà: ⇔x=34⇔x=34

x=34x=34

⇒minB=−54:14=−54.4=−5⇒minB=−54:14=−54.4=−5  Khi 

Bình luận (0)
BB
Xem chi tiết
NL
20 tháng 1 2021 lúc 20:24

Đề sai, biểu thức này chỉ tồn tại max, ko tồn tại min

Bình luận (1)
DA
Xem chi tiết
AH
16 tháng 9 2020 lúc 22:08

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/hoi-dap/question/1023940.html

Bình luận (0)
H24
Xem chi tiết
TH
21 tháng 3 2017 lúc 12:28

mình cũng kb

Bình luận (0)
LV
Xem chi tiết
TP
15 tháng 8 2018 lúc 20:40

\(\frac{\left(x+10\right)^2}{x}=\frac{x^2+2x+100}{x}\)

Vì \(x>0\) nên \(\left(x^2+2x+100\right)>0\forall x\)

Mà \(x^2+2x>0\)( vì x>0 )

\(\Rightarrow x^2+2x+100\ge100\)

Vậy GTNN của bt trên là 100

P/s: Cái này tui không chắc lắm ! Có gì sai mong bạn bỏ qua!

Bình luận (0)
QS
Xem chi tiết
H24
19 tháng 7 2019 lúc 9:28

Em làm bài 2 nha!

\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\) (1)

+)\(A=0\Rightarrow x=\frac{3}{4}\)

+) A khác 0 thì (1) là pt bậc 2.

\(\Delta'=\left(2\right)^2-A\left(A-3\right)\ge0\Leftrightarrow4-A^2+3A\ge0\Leftrightarrow-1\le A\le4\)

Vậy...

Bình luận (0)
H24
19 tháng 7 2019 lúc 9:32

Bài 1: (bài nào nghĩ ra thì em làm trước)

C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\). Đặt x - 1 = y >0 thì x = y + 1 >1

Khi đó \(C=\frac{2\left(y+1\right)^2-6\left(y+1\right)+5}{y^2}=\frac{2y^2-2y+1}{y^2}\)

\(=\frac{1}{y^2}-\frac{2}{y}+2\). đặt \(\frac{1}{y}=t>0\). \(C=t^2-2t+2=\left(t-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi t = 1 suy ra y = 1 suy ra x = 2

Vậy Min C = 1 khi x = 2

Bình luận (0)
QS
Xem chi tiết
JY
Xem chi tiết
NG
Xem chi tiết
NH
19 tháng 7 2018 lúc 9:43

1)Ta có A =x- 4x + 1

             = x2 - 2.2.x + 22 - 3

             = ( x - 2 )-3

  Với x \(\inℝ\), ( x - 2 )\(\ge\)

  \(\Rightarrow\)(x - 2 )- 3 \(\ge\)-3

Vậy GTNN của A là -3

2) Ta có B = 4x+ 4x + 11

                   = ( 2x )+ 2.2x.1 + 12 +10

                  = ( 2x + 1 )+10

*tương tự câu 1*

3) *tương tự câu 2*

4) Ta có P = ( 2x + 1 )2 + ( x + 2)

                   = [ ( 2x )+ 2.2x.1 + 12  ] + [ x+ 2.x.2 + 22 ]

                    = 4x2 + 4x +1 + x2 + 4x + 4 

                    = 5x2 + 8x + 5

       Với x\(\inℝ\), 5x2 \(\ge\)0

             mà GTNN của 8x + 5 là 5

\(\Rightarrow\) GTNN của 5x2 + 8x + 5  là 5

  Vậy GTNN của  ( 2x + 1 )2 + ( x + 2) là 5

Bình luận (0)