Tìm GTNN của : \(\frac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Tìm GTNN của: \(B=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Ta có: \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\) B nhỏ nhất khi \(4x^2-6x+1\)có giá trị nhỏ nhất
Mà: \(4x^2-6x+1=4\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)-\dfrac{5}{4}=4\left(x-\dfrac{3}{4}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)
\(\Rightarrow\min\limits_{\left(4x^2-6x+1\right)}=\dfrac{-5}{4}.\) khi \(x=\dfrac{3}{4}\)
\(\Rightarrow\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\Rightarrow\min\limits_B=\dfrac{-5}{4}:\dfrac{1}{4}=\dfrac{-5}{4}.4=-5\) Khi \(x=\dfrac{3}{4}\)
Ta có: (2x−1)2≥0(2x−1)2≥0
⇒⇒ B nhỏ nhất khi 4x2−6x+14x2−6x+1có giá trị nhỏ nhất
Mà: ⇔x=34⇔x=34
x=34x=34
⇒minB=−54:14=−54.4=−5⇒minB=−54:14=−54.4=−5 Khi
Tìm GTNN của: \(B=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Đề sai, biểu thức này chỉ tồn tại max, ko tồn tại min
Tìm GTNN của : \(\frac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/hoi-dap/question/1023940.html
Tìm GTNN
a)\(A=\frac{x^2-4x+1}{x^2}\)
b)\(B=\frac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Tìm GTNN:
a, \(\frac{4x^2-6x+1}{\left(2x-1\right)^2}\)
b, \(\frac{\left(x+10\right)^2}{x}\)vs x>0
\(\frac{\left(x+10\right)^2}{x}=\frac{x^2+2x+100}{x}\)
Vì \(x>0\) nên \(\left(x^2+2x+100\right)>0\forall x\)
Mà \(x^2+2x>0\)( vì x>0 )
\(\Rightarrow x^2+2x+100\ge100\)
Vậy GTNN của bt trên là 100
P/s: Cái này tui không chắc lắm ! Có gì sai mong bạn bỏ qua!
Tìm GTNN của các biểu thức sau:
A = \(\left(x^2-x\right)\left(x^2+3x+2\right)\)
B = \(x^4+\left(x-2\right)^2+6x^2\left(x-2\right)^2\)
C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\)
D = \(4x^2+4x-6\left|2x+1\right|+6\)
Tìm cả GTLN và GTNN
A = \(\frac{3-4x}{x^2+1}\)
Em làm bài 2 nha!
\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\) (1)
+)\(A=0\Rightarrow x=\frac{3}{4}\)
+) A khác 0 thì (1) là pt bậc 2.
\(\Delta'=\left(2\right)^2-A\left(A-3\right)\ge0\Leftrightarrow4-A^2+3A\ge0\Leftrightarrow-1\le A\le4\)
Vậy...
Bài 1: (bài nào nghĩ ra thì em làm trước)
C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\). Đặt x - 1 = y >0 thì x = y + 1 >1
Khi đó \(C=\frac{2\left(y+1\right)^2-6\left(y+1\right)+5}{y^2}=\frac{2y^2-2y+1}{y^2}\)
\(=\frac{1}{y^2}-\frac{2}{y}+2\). đặt \(\frac{1}{y}=t>0\). \(C=t^2-2t+2=\left(t-1\right)^2+1\ge1\)
Đẳng thức xảy ra khi t = 1 suy ra y = 1 suy ra x = 2
Vậy Min C = 1 khi x = 2
Bài 2 Tìm GTNN của các biểu thức sau:
B = \(\frac{2x^2-6x+5}{\left(X-1\right)^2}\)
A = \(4x^2+4x-6\left|2x+1\right|+6\)
Tìm Max của \(D=\frac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Bài 5: Tìm GTNN của biểu thức:
\(1,A=x^2-4x+1\)
\(2,B=4x^2+4x+11\)
\(3,M=3x^2-6x+1\)
\(4,P=\left(2x+1\right)^2+\left(x+2\right)^2\)
1)Ta có A =x2 - 4x + 1
= x2 - 2.2.x + 22 - 3
= ( x - 2 )2 -3
Với x \(\inℝ\), ( x - 2 )2 \(\ge\)0
\(\Rightarrow\)(x - 2 )2 - 3 \(\ge\)-3
Vậy GTNN của A là -3
2) Ta có B = 4x2 + 4x + 11
= ( 2x )2 + 2.2x.1 + 12 +10
= ( 2x + 1 )2 +10
*tương tự câu 1*
3) *tương tự câu 2*
4) Ta có P = ( 2x + 1 )2 + ( x + 2)2
= [ ( 2x )2 + 2.2x.1 + 12 ] + [ x2 + 2.x.2 + 22 ]
= 4x2 + 4x +1 + x2 + 4x + 4
= 5x2 + 8x + 5
Với x\(\inℝ\), 5x2 \(\ge\)0
mà GTNN của 8x + 5 là 5
\(\Rightarrow\) GTNN của 5x2 + 8x + 5 là 5
Vậy GTNN của ( 2x + 1 )2 + ( x + 2)2 là 5