b=4.5+5.6+6.7+....+49.50
\(\frac{1}{3.4}\) + \(\frac{1}{4.5}\)+ \(\frac{1}{5.6}\)+ \(\frac{1}{6.7}\)+...........+ \(\frac{1}{49.50}\)
dấu chấm ở số thập phân là nhân
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{49.50}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
=\(\frac{49}{50}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{49\times50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}.\)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
1/4.5 + 1/5.6 + 1/6.7 +....+ 1/39.40
1/4*5+1/5*6+1/6*7+...+1/39*40
=1/4-1/5+1/5-1/6+1/6-1/7+...+1/39-1/40
=1/4-1/40
=9/40
1/4.5 + 1/5.6 + 1/6.7 + ....+ 1/39.40
=1/4+1/5-1/5+...-1/39+1/40
=1/4+1/19
=.....(tự tính nka)
\(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{39.40}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{39}-\dfrac{1}{40}\)
\(=\dfrac{1}{4}-\dfrac{1}{40}\)
\(=\dfrac{9}{40}\)
giúp mình với
a) A=1/3.4-1/4.5-1/5.6-...-1/9.10
b)B=7/3.4-9/4.5+11/5.6-13/6.7+15/7.8-17/8.9
Ai làm được mình cho 1 like :))
-3/2.3-3/3.4-3/4.5-3/5.6-3/6.7
\(=-3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)=-3\cdot\dfrac{5}{14}=-\dfrac{15}{14}\)
tính binh thường trong mày tính thì sẽ bằng \(\dfrac{207}{20}\)
1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\\ =\dfrac{1}{2}-\dfrac{1}{7}\\ =\dfrac{5}{14}\)
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
Bài 1 : Tính tổng sau
a) \(A=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\)
b) \(B=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+....+\dfrac{1}{23.24}+\dfrac{1}{24.25}\)
c) \(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\)
`=`\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
`=`\(\dfrac{1}{3}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\dfrac{1}{9}\)
`=`\(\dfrac{1}{3}-\dfrac{1}{9}\)
`=`\(\dfrac{2}{9}\)
Vậy, \(A=\dfrac{2}{9}\)
`b)`
\(B=\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{23\cdot24}+\dfrac{1}{24\cdot25}\)
`=`\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
`=`\(\dfrac{1}{5}-\left(\dfrac{1}{6}-\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\dfrac{1}{25}\)
`=`\(\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)
Vậy, \(B=\dfrac{4}{25}\)
`c)`
\(C=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
`=`\(1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-...-\dfrac{1}{100}\)
`=`\(1-\dfrac{1}{100}=\dfrac{99}{100}\)
Vậy, \(C=\dfrac{99}{100}\)
A = 1.2+2.3+3.4+4.5+5.6+6.7+7.8+8.9+7.10
⇒ tự luận