CM S= 2+2^2+2^3+...+2^10 chia hết cho 3
1 cm S=1+2+2^2+...+2^39 chia hết cho 15
2 cm A=a+a^2+a^3+ ...+a^2.n chia hết cho a+1
3 cm tổng 3 số tự nhiên liên tiếp chia hết cho 3
,...... 5.................................................5
4 cho a, b thuộc N và a- b chia hết cho 7. cm 4.a +3.b chia hết cho 7
1.Gộp 3 số vào thành 1 tổng rồi tính:
(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)
=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)
=1*15+2^3*15+...+2^37*15
=15*(1+2^3+...+2^39) chia hết cho 15
S=4+42+43+...+42004
CM S chia hết cho 10 ,3S + 4 chia hết cho 42004
S = 4+42+.....+42004
S = (4+42)+(43+44)+....+(42003+42004)
S = 1(4+42)+43(4+42)+.....+42003(4+42)
S = 1.20 + 43.20 +......+ 42003.20
S = 20(1+43+...+42003) chia hết cho 10 (vì 20 chia hết cho 10)
S = 4+42+43+...+42004
4S = 42+43+44+...+42005
3S = 4S - S = 42005 - 4
=> 3S + 4 = 42005
Mà 42005 chia hết cho 42004
=> 3S + 4 chia hết cho 42004 (đpcm)
tại sao 4^2005 lại chia hết cho 4^2004
vì 4^2004 x 4=4^2005
1.a,chứng minh 12^4.54^2=36^5
b,10^6-5^7 chia hết cho 59
c,cho S=1+3^1+3^2+3^3…+3^99 chứng minh S chia hết cho 4, S chia hết cho 40
2. Tính: 10^4.27^3/6^4.15^4
1 Cho S = 2 + 2^2 + 2^3 + 2^4 + ............+ 2^10 Chứng tỏ chia hết cho 3
1 Chứng tỏ rằng 1+ 3+ 3^2 +3^3 +............+ 3^99 chia hết cho 40
a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210
= (2 + 22) + (23 + 24) +.....+ (29 + 210)
= 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)
= 3.(2 + 23 +.... + 29) chia hết cho 3
=> S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)
b) 1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40 (đpcm)
BÀI 1:
S = 2 + 22 + 23 + 24 + ..... + 210
= (2 + 22) + ( 23 + 24) + ..... + (27 + 28) + (29 + 210)
= 2(1 + 2) + 23(1 + 2) + ..... + 27(1 + 2) + 29(1 + 2)
= 3(2 + 23 + .... + 27 + 29) \(⋮3\)
BÀI 2:
1 + 3 + 32 + 33 + ....... + 399
= (1 + 3 + 32 + 33) + ..... + (396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33) + ..... + 396(1 + 3 + 32 + 33)
= 40(1 + 34 + ..... + 396) \(⋮40\)
CM:3^x+2 +2^x+2 +2^x +3^x chia hết cho 10
1. Cho a =2+2^2+2^3+2^4+......+2^100
CM : a chia hết cho 3 ; 15
2. CM :b=3^198+11^47 chia hết cho 10
3. Cho 1^2+2^2+3^2+4^2+.....+10^2=385
Tính : 4^2+8^2+12^2+...+40^2
12^2+14^2+16^2+18^2+20^2-(1^2+3^2+5^2+7^2+9^2)
4. CM : 70*(3^900+3^899+3^898+....+3^2+3^1+3^0)-175 chia hết cho 105
giúp mk vs mọi người ơi !!!!!!!!!!!!
Cho S = 2+23 +25+27+............+299
Chứng tỏ rằng S chia hết cho 2 và S chia hết cho 10
Có các số hạng của A\S chia hết cho 2
=> S chia hết cho 2
S = 2+23+25+.....+299
S = (2+23)+(25+27)+....+(297+299)
S = 1.(2+23) + 24(2+23) +....+ 296(2+23)
S = 1.10 + 24.10 +....+ 296.10
S = 10.(1+24+...+296) chia hết cho 10
KL: S chia hết cho 2 và 10 (Đpcm)
cho S= 2+23+25+27+......+297+299 C/m S chia hết cho 5;C/m S chia hết cho 10
a) \(S=2+2^3+2^5+2^7+...+2^{97}+2^{99}\)
\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(=2.5+2^5.5+...+2^{97}.5\)
\(=5\left(2+2^5+...+2^{97}\right)\) chia hết cho 5 (1)
b)\(S=2+2^3+2^5+2^7+...+2^{97}+2^{99}\)\(=2\left(1+2^2+2^4+...+2^{98}\right)\) chia hết cho 2 (2)
Từ (1) và (2) và (2;5)=1 => S chia hết cho 2.5=10
cho mình hỏi bạn lấy 2.{1+22 }+25 [1+22 ]+.....+297 [1+22 ] ở đâu ra
1. S= 3 + 32 + 35 + ... + 32013 + 32015
a. CM: S không chia hết cho 9
b. CM: S chia hết cho 70
1)\(S=3+3^3+3^5+...+3^{2013}+3^{2015}\)(có 1008 nhóm)
\(S=\left(3+3^3\right)+\left(3^5+3^7\right)+\left(3^9+3^{11}\right)+...+\left(3^{2013}+3^{2015}\right)\)(có 504 nhóm)
\(S=30+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)
\(S=30+90\left(3^3+3^7+...+3^{2011}\right)⋮90\)