Những câu hỏi liên quan
NL
Xem chi tiết
KC
Xem chi tiết
H24
Xem chi tiết
MD
20 tháng 10 2018 lúc 23:04

Quy đồng hết lên

CHú yys : nên c/m từng cái một thì hơn

/

Bình luận (0)
H24
16 tháng 11 2018 lúc 23:21

mèo con

Bình luận (0)
H24
26 tháng 11 2018 lúc 0:21

TRẢ LƯƠNG BẰNG…

Có 2 anh bạn lâu lâu mới gặp nhau:
- Dạo này sao trông mày mập ú vậy?
- À! Có gì đâu, vợ tao làm ở nhà máy sản xuất bột mì, cơ quan trả lương bằng sản phẩm nên mập vậy. Thế còn mày, sao còm nhom vậy?
- Vợ tao cũng vậy, nó cũng được trả lương bằng sản phẩm nhưng mà nó làm tại nhà máy sản xuất …” bcs” Yell

Bình luận (0)
HT
Xem chi tiết
AH
31 tháng 10 2019 lúc 18:28

Lời giải:

Liên hợp ta thấy:

\(2(\sqrt{n+1}-\sqrt{n})=2.\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(1)\)

\(2(\sqrt{n}-\sqrt{n-1})=2.\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(2)\)

Từ \((1);(2)\Rightarrow 2(\sqrt{n+1}-\sqrt{n})< \frac{1}{\sqrt{n}}< 2(\sqrt{n}-\sqrt{n-1})\)

------------------------

Áp dụng vào bài toán:

\(S=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>1+2(\sqrt{3}-\sqrt{2})+2(\sqrt{4}-\sqrt{3})+...+2(\sqrt{101}-\sqrt{100})\)

\(\Leftrightarrow S>1+2(\sqrt{101}-\sqrt{2})>18(*)\)

Và:

\(S< 1+2(\sqrt{2}-\sqrt{1})+2(\sqrt{3}-\sqrt{2})+....+2(\sqrt{100}-\sqrt{99})\)

\(\Leftrightarrow S< 1+2(\sqrt{100}-\sqrt{1})=19(**)\)

Từ $(*); (**)$ suy ra $18< S< 19$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
NK
Xem chi tiết
AH
31 tháng 10 2019 lúc 18:29

Bạn tham khảo lời giải tại link sau:

Câu hỏi của Hoa Trần Thị - Toán lớp 9 | Học trực tuyến

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
AJ
Xem chi tiết
NL
27 tháng 6 2020 lúc 10:38

\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(\Rightarrow S>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\right)\)

\(\Rightarrow S>1+2\left(\sqrt{n+1}-\sqrt{2}\right)\)

Với \(n\ge98\Rightarrow S>1+2\left(\sqrt{99}-\sqrt{2}\right)\)

Ta sẽ chứng minh \(1+2\left(\sqrt{99}-\sqrt{2}\right)>18\Leftrightarrow\sqrt{99}-\sqrt{2}>\frac{17}{2}\)

\(\Leftrightarrow101-2\sqrt{198}>\frac{298}{4}\Leftrightarrow\sqrt{198}< \frac{115}{8}\)

\(\Leftrightarrow198< \frac{13225}{64}\) (đúng vì \(\frac{13225}{64}>\frac{12800}{64}=200>198\))

Khi \(n=98\Rightarrow S>18\) theo cmt

Mặt khác: \(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

\(\Rightarrow S< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{98}-\sqrt{97}\right)\)

\(\Rightarrow S< 1+2\left(\sqrt{98}-1\right)=2\sqrt{98}-1< 2\sqrt{100}-1=19\)

\(\Rightarrow18< S< 19\Rightarrow S\) nằm giữa 2 STN liên tiếp nên ko thể là STN

Bình luận (0)
LN
Xem chi tiết
LK
24 tháng 6 2018 lúc 12:35

......................?

mik ko biết

mong bn thông cảm 

nha ................

Bình luận (0)