Cho \(S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\). CMR: \(18< S< 19\)
CMR \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)với n thuộc N*
Áp dụng cho S=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
CMR 18<S<19
\(2\left(\sqrt{N+1}-\sqrt{N}\right)<\frac{1}{\sqrt{N}}<2\left(\sqrt{N}-\sqrt{N-1}\right)\)
Với N>0
Áp dụng: cho s=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
Cmr 18<s<19
CMR:\(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)\()\)(n\(\in\)\(ℕ^∗\))
Từ đó áp dung chứng minh: S=1+\(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{100}}\)
CMR:18<S<19
Quy đồng hết lên
CHú yys : nên c/m từng cái một thì hơn
/
TRẢ LƯƠNG BẰNG…
Có 2 anh bạn lâu lâu mới gặp nhau:
- Dạo này sao trông mày mập ú vậy?
- À! Có gì đâu, vợ tao làm ở nhà máy sản xuất bột mì, cơ quan trả lương bằng sản phẩm nên mập vậy. Thế còn mày, sao còm nhom vậy?
- Vợ tao cũng vậy, nó cũng được trả lương bằng sản phẩm nhưng mà nó làm tại nhà máy sản xuất …” bcs”
Chứng minh rằng \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) (với \(n\in N^{\cdot}\))
Áp dụng cho S = \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
Chứng minh 18<S<19 ?
Lời giải:
Liên hợp ta thấy:
\(2(\sqrt{n+1}-\sqrt{n})=2.\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(1)\)
\(2(\sqrt{n}-\sqrt{n-1})=2.\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(2)\)
Từ \((1);(2)\Rightarrow 2(\sqrt{n+1}-\sqrt{n})< \frac{1}{\sqrt{n}}< 2(\sqrt{n}-\sqrt{n-1})\)
------------------------
Áp dụng vào bài toán:
\(S=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>1+2(\sqrt{3}-\sqrt{2})+2(\sqrt{4}-\sqrt{3})+...+2(\sqrt{101}-\sqrt{100})\)
\(\Leftrightarrow S>1+2(\sqrt{101}-\sqrt{2})>18(*)\)
Và:
\(S< 1+2(\sqrt{2}-\sqrt{1})+2(\sqrt{3}-\sqrt{2})+....+2(\sqrt{100}-\sqrt{99})\)
\(\Leftrightarrow S< 1+2(\sqrt{100}-\sqrt{1})=19(**)\)
Từ $(*); (**)$ suy ra $18< S< 19$ (đpcm)
Chứng minh rằng
\(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)với \(n\inℕ^∗\)
Áp dụng cho \(S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
chứng minh rằng 18<S<19
a) Chứng minh: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) (với n \(\in\) N*)
b) Áp dụng cho S=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
Chứng minh 18<S<19
Giúp em với mấy anh chị ơiiiiiiiiiiii
Bạn tham khảo lời giải tại link sau:
Câu hỏi của Hoa Trần Thị - Toán lớp 9 | Học trực tuyến
Cho \(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)
CMR: S không là số tự nhiên
Đặt tổng S=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{n}}\), với n là số tự nhiên. CMR nếu n≥98 thì S>18. Khi n=98, CMR S không phải là số tự nhiên.
\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(\Rightarrow S>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\right)\)
\(\Rightarrow S>1+2\left(\sqrt{n+1}-\sqrt{2}\right)\)
Với \(n\ge98\Rightarrow S>1+2\left(\sqrt{99}-\sqrt{2}\right)\)
Ta sẽ chứng minh \(1+2\left(\sqrt{99}-\sqrt{2}\right)>18\Leftrightarrow\sqrt{99}-\sqrt{2}>\frac{17}{2}\)
\(\Leftrightarrow101-2\sqrt{198}>\frac{298}{4}\Leftrightarrow\sqrt{198}< \frac{115}{8}\)
\(\Leftrightarrow198< \frac{13225}{64}\) (đúng vì \(\frac{13225}{64}>\frac{12800}{64}=200>198\))
Khi \(n=98\Rightarrow S>18\) theo cmt
Mặt khác: \(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
\(\Rightarrow S< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{98}-\sqrt{97}\right)\)
\(\Rightarrow S< 1+2\left(\sqrt{98}-1\right)=2\sqrt{98}-1< 2\sqrt{100}-1=19\)
\(\Rightarrow18< S< 19\Rightarrow S\) nằm giữa 2 STN liên tiếp nên ko thể là STN
Tính :
a ) \(S=\frac{1}{\sqrt{1}\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+.....+\)\(\frac{1}{\sqrt{2017}+\sqrt{2019}}\)
b ) \(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+....+\frac{1}{\sqrt{100}+\sqrt{102}}\)
c ) \(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....+\frac{1}{\sqrt{100}+\sqrt{101}}\)
d ) \(S=\frac{1}{\sqrt{3}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{12}}+....+\frac{1}{\sqrt{2016}+\sqrt{2019}}\)
......................?
mik ko biết
mong bn thông cảm
nha ................