Những câu hỏi liên quan
H24
Xem chi tiết
TT
Xem chi tiết
TD
1 tháng 8 2018 lúc 22:08

Hỏi nhiều thế.

Bình luận (0)
NT
8 tháng 8 2022 lúc 10:34

\(=\dfrac{\sqrt{13+2\sqrt{12}}-\sqrt{13-2\sqrt{12}}+2\sqrt{12}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{12}+1-\sqrt{12}+1+2\sqrt{12}}{\sqrt{2}}\)

\(=\dfrac{2\sqrt{12}+2}{\sqrt{2}}=2\sqrt{6}+\sqrt{2}\)

Bình luận (0)
CW
Xem chi tiết
AH
24 tháng 6 2018 lúc 0:41

Lời giải:

1)

Để biểu thức có nghĩa thì:

\(2x^2-5x+3\geq 0\)

\(\Leftrightarrow 2x(x-1)-3(x-1)\geq 0\)

\(\Leftrightarrow (2x-3)(x-1)\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x\geq \frac{3}{2}\\ x\leq 1\end{matrix}\right.\)

2)

\(\sqrt{6.5+\sqrt{12}}+\sqrt{6.5-\sqrt{12}}+2\sqrt{6}\)

\(=\sqrt{(\sqrt{6})^2+(\frac{1}{\sqrt{2}})^2+2\sqrt{6}.\frac{1}{\sqrt{2}}}+\sqrt{(\sqrt{6})^2+(\frac{1}{\sqrt{2}})^2-2\sqrt{6}.\frac{1}{\sqrt{2}}}+2\sqrt{6}\)

\(=\sqrt{(\sqrt{6}+\frac{1}{\sqrt{2}})^2}+\sqrt{(\sqrt{6}-\frac{1}{\sqrt{2}})^2}+2\sqrt{6}\)

\(=\sqrt{6}+\frac{1}{\sqrt{2}}+\sqrt{6}-\frac{1}{\sqrt{2}}+2\sqrt{6}=4\sqrt{6}\)

Bình luận (0)
VT
Xem chi tiết
H24
30 tháng 7 2018 lúc 11:33

c)

\(\sqrt{2}C=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)

\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)

\(=\sqrt{5}+1-\left(\sqrt{5}-1\right)-2=0\Rightarrow C=0\)

b)  

\(B=3\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)-\sqrt{5}\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)\)

\(\Rightarrow\sqrt{2}B=3\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)-\sqrt{5}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)\)

\(=3\left(\sqrt{5}+1+\sqrt{5}-1\right)-\sqrt{5}\left(\sqrt{5}+1-\sqrt{5}+1\right)\)

\(\sqrt{2}B=6\sqrt{5}-2\sqrt{5}=4\sqrt{5}\Rightarrow B=2\sqrt{10}\)

Bình luận (0)
NN
24 tháng 6 2021 lúc 10:42

C)3+5352b) (35)3+5+(3+5)35d) 474+7+7e) 6,5+12+6,512+26mình cần giải gấp ạ 

Bình luận (0)
 Khách vãng lai đã xóa
NU
Xem chi tiết
HS
11 tháng 9 2018 lúc 17:30

\(A=\dfrac{5.\left(38^2-17^2\right)}{8\left(47^2-19^2\right)}\\ =\dfrac{5\left(38-17\right)\left(38+17\right)}{8\left(47-19\right)\left(47+19\right)}\\ =\dfrac{5.21.55}{8.28.66}\\ =\dfrac{5.1155}{8.1848}\\ =\dfrac{5.5}{8.8}\\ =\dfrac{25}{64}\)

\(B=\sqrt{\dfrac{0,2\times1,21\times0,3}{7,5\times3,2\times0,64}}\\ =\sqrt{0,0625\times1,890625\times0,04}\\ =\sqrt{\dfrac{121}{25600}}\\ =\dfrac{11}{160}\)

Bình luận (0)
YT
Xem chi tiết
NL
13 tháng 3 2020 lúc 23:36

\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\left(16-15\right)=2\)

\(B=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)\right)\)

\(=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)\right)\)

\(=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\right)\)

\(=\frac{1}{\sqrt{2}}\left(2\sqrt{5}-2+2\sqrt{5}+2\right)=\frac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)

\(C=\frac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{5}+1-\sqrt{5}+1-2\right)=0\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
13 tháng 3 2020 lúc 23:40

\(D=\frac{1}{\sqrt{2}}\left(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+\sqrt{14}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{14}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}-1-\sqrt{7}-1+\sqrt{14}\right)\)

\(=\frac{1}{\sqrt{2}}\left(-2+\sqrt{14}\right)=\sqrt{7}-\sqrt{2}\)

\(E=\frac{1}{\sqrt{2}}\left(\sqrt{13+2\sqrt{12}}+\sqrt{13-2\sqrt{12}}\right)+2\sqrt{6}\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{12}+1\right)^2}+\sqrt{\left(\sqrt{12}-1\right)^2}\right)+2\sqrt{6}\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{12}+1+\sqrt{12}-1\right)+2\sqrt{6}\)

\(=\sqrt{24}+2\sqrt{6}=4\sqrt{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
H24
Xem chi tiết
H24
12 tháng 12 2021 lúc 9:32

tại sao ko sử dụng máy tính

Bình luận (0)
H24
12 tháng 12 2021 lúc 9:38

Vì \(\sqrt{2,5+6,5}\ge0\Rightarrow\sqrt{2,5+6,5}< \sqrt{2,5+6,5}+1\)

Bình luận (0)
H24
Xem chi tiết
TC
17 tháng 8 2021 lúc 20:27

undefinedundefined

Bình luận (0)
NT
17 tháng 8 2021 lúc 22:38

a: \(\sqrt{5+2\sqrt{6}}=\sqrt{3}+\sqrt{2}\)

b: \(\sqrt{12+2\sqrt{35}}-\sqrt{12-2\sqrt{35}}=\sqrt{7}+\sqrt{5}-\sqrt{7}+\sqrt{5}=2\sqrt{5}\)

c: \(\sqrt{16+6\sqrt{7}}=4+\sqrt{7}\)

d: \(\sqrt{31-12\sqrt{3}}=3\sqrt{3}-2\)

e: \(\sqrt{27+10\sqrt{2}}=5+\sqrt{2}\)

f: \(\sqrt{14+6\sqrt{5}}=3+\sqrt{5}\)

Bình luận (0)