Giúp mik bài này ns vx
1. Tìm GTNN của biểu thức P=\(\sqrt{x^2+6x+2011}\)
Tìm GTNN của biểu thức Q = \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}+2011\)
\(Q=\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}+2011\)
\(Q=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}+2011\)
\(Q=\left|3x-1\right|+\left|5-3x\right|+2011\)
Đặt \(Q'=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)
Đẳng thức xảy ra \(\Leftrightarrow\left(3x-1\right)\left(5-3x\right)\ge0\)
\(\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\)
\(\Rightarrow Min_Q=Min_{Q'}+2011=4+2011=2015\)
Q = \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}+2011\)
Q = \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-5\right)^2}+2011\)
Q = \(3x-1+3x-5+2011\)
Q = \(6x+2005\)
\(Q=\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}+2011\)
\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-5\right)^2}+2011\)
\(=\left|3x-1\right|+\left|3x-5\right|+2011\)
Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(\left|3x-1\right|+\left|3x-5\right|\ge\left|\left(3x-1\right)+\left(5-3x\right)\right|=4\)
(Dấu "="\(\Leftrightarrow\left(3x-1\right)\left(5-3x\right)\ge0\)
\(TH1:\hept{\begin{cases}3x-1\ge0\\5-3x\ge0\end{cases}}\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\)
\(TH2:\hept{\begin{cases}3x-1\le0\\5-3x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{3}\\x\ge\frac{3}{5}\end{cases}}\left(L\right)\))
\(\Rightarrow Q\ge2015\)
(Dấu "="\(\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\))
Vậy \(Q_{min}=2015\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\)
Giúp mình bài này với:
Tìm GTNN của biểu thức \(x^4-6x^3+10x^2-6x+9\)
Mong mọi người giúp mình bài này, mình cảm ơn trước ạ.
-Tìm GTLN và GTNN của biểu thức \(A=\sqrt{2x-3}+2\sqrt{3-x}\).
ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)
\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)
\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)
\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)
\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)
Cho biểu thức: f(x)= \(\sqrt{3-x}+\sqrt{2+x}\)
Tìm GTNN của biểu thức trên.
Mọi người giúp mình bài này với ạ....
\(f\left(x\right)=\sqrt{3-x}+\sqrt{2+x}\ge\sqrt{3-x+2+x}=\sqrt{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}3-x=0\\2+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
Vậy GTNN của \(f\left(x\right)=\sqrt{5}\) khi và chỉ khi x = 3; x = -2
bạn ơi ở bước:
f(x)=\(\sqrt{3-x}+\sqrt{2+x}\ge\sqrt{3-x+2+x}\)
làm sao bạn ra đc bất đẳng thức như vậy ạ
Cho biểu thức:
f(x) = \(\sqrt{3-x}+\sqrt{2+x}\)
a) Tìm các giá trị của x để biểu thức f(x) xác định.
b) Tìm GTLN và GTNN của biểu thức f(x)
Mọi người ơi giải giúp mình bài này với ạ. Làm chi tiết 1 chút giúp mình nha.
Cho biểu thức:
f(x) = \(\sqrt{3-x}+\sqrt{2+x}\)
a) Tìm các giá trị của x để biểu thức f(x) xác định.
b) Tìm GTLN và GTNN của biểu thức f(x)
Mọi người ơi giải giúp mình bài này với ạ. Làm chi tiết 1 chút giúp mình nha.
Hỗ trợ em bài này ạ. Tìm GTLN và GTNN của biểu thức P=\(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\)
Lại có: \(4\sqrt{x}\ge0\) với mọi x
\(3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]>0\) với mọi x
\(\Rightarrow\) \(\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\ge0\) với mọi x
Dấu "=" xảy ra \(\Leftrightarrow\) x = 0
Vậy ...
Chúc bn học tốt! (Mk ms nghĩ ra được GTNN thôi thông cảm!)
Còn tìm GTLN:
Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-1\right)^2+\sqrt{x}\right]}\le\dfrac{4\sqrt{x}}{3\sqrt{x}}=\dfrac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\sqrt{x}-1=0\) \(\Leftrightarrow\) x = 1
Vậy ...
Chúc bn học tốt!
Tìm GTNN của biểu thức A = \(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}\)
A=\(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+3\right)^2}\)=|x-1|+|x+3|=|1-x|+|x+3|
Áp dụng bđt |a|+|b|\(\ge\)|a+b| ta được: A=|1-x|+|x+3|\(\ge\)|1-x+x+3|=4
Dấu "=" xảy ra khi (1-x)(x+3)\(\ge\)0 <=> \(-3\le x\le1\)
Vậy Amin=4 khi \(-3\le x\le1\)
A = \(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}\)
= \(\sqrt{\left(1-x\right)^2}+\sqrt{\left(x+3\right)^2}\)
= 1 - x + x + 3
= 4
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.