Những câu hỏi liên quan
NK
Xem chi tiết
H24
28 tháng 10 2021 lúc 9:34

Áp dụng PTG vào ΔAHB có: \(AH^2+BH^2=AB^2\Rightarrow AB=\sqrt{12^2+5^2}\Rightarrow AB=13\left(cm\right)\)

Áp dụng PTG vào ΔAHC có: \(AH^2+HC^2=AC^2\Rightarrow HC=\sqrt{20^2-12^2}\Rightarrow AH=16\left(cm\right)\)

Chu vi tam giác ABC là: \(AB+AC+HB+HC=13+20+5+16=54\left(cm\right)\)

Bình luận (3)
OY
28 tháng 10 2021 lúc 9:42

undefined

Bình luận (0)
PA
Xem chi tiết
NH
6 tháng 3 2018 lúc 21:50

Áp dụng định lí Py-ta-go vào tgABH ta được:

    \(AB^2=AH^2+BH^2\)

Mà AH=12;BH=5

\(\Rightarrow AB^2=12^2+5^2\)

\(\Rightarrow AB^2=144+25=169\)

\(\Rightarrow AB=13\left(cm\right)\left(doAB>0\right)\)

Áp dụng định lí Py-ta-go vào tg ACH ta được:

   

Bình luận (0)
DD
Xem chi tiết
NK
Xem chi tiết

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = 122 + HC2

=> HC2 = 202 - 122

HC2 = 400 - 144 = 256 = 162

=> HC = 16 cm

Ta có : BC = HC + HB = 16 + 5 = 21 cm

Tam giác ABH vuông tại H nên :

AB2 = AH2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169 = 132

=> AB = 13 cm

Vậy chu vi tam giác ABC là :

AB + AC + BC = 13 + 20 + 21 = 54 (cm)

Bình luận (0)
 Khách vãng lai đã xóa
TN
16 tháng 4 2020 lúc 11:40

chu vi là 54 cm

Bình luận (0)
 Khách vãng lai đã xóa
NN
16 tháng 4 2020 lúc 14:16

\(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)( định lý Pytago )

mà \(AH=12cm\)\(BH=5cm\)

\(\Rightarrow12^2+5^2=AB^2\)\(\Rightarrow AB^2=144+25\)

\(\Rightarrow AB^2=169\)\(\Rightarrow AB=13\)( cm )

\(\Delta AHC\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)( định lý Pytago )

\(\Rightarrow HC^2=AC^2-AH^2\)

mà \(AC=20cm\)\(AH=12cm\)

\(\Rightarrow HC^2=20^2-12^2\)\(\Rightarrow HC^2=400-144\)

\(\Rightarrow HC^2=256\)\(\Rightarrow HC=16\)( cm )

mà \(BC=HB+HC\)\(\Rightarrow BC=5+16=21\)( cm )

\(\Rightarrow P_{ABC}=AB+AC+BC=13+20+21=54\)( cm )

Vậy chu vi của \(\Delta ABC\)là 54 cm

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
21 tháng 1 2019 lúc 12:55

Giải sách bài tập Toán 7 | Giải sbt Toán 7

∆AHB có ∠(AHB) =90°

Theo định lý pitago, ta có:

AB2=AH2+HB2

= 122+52=169

Vậy AB = 13 cm

∆AHC có ∠(AHC) =90o

Theo định lý pitago, ta có:

AC2=AH2+HC2

HC2=AC2-AH2=202-122=400-144=256

Vậy HC = 16cm

Ta có: BC = BH + HC = 5 +16 = 21cm

Chu vi tam giác ABC là: AB + AC + BC = 13 + 20 + 21 = 54cm

Bình luận (0)
CN
Xem chi tiết
JN
Xem chi tiết
TH
31 tháng 1 2018 lúc 22:16

A H C B 5 12 20 Áp dụng định lý Pytago cho 2 tam giác ABH và ACH ta có AB=13 và HC=16 

suy ra chu vi ABC= AC+AB+BH+CH=20+13+5+16=54

Bình luận (0)
NP
7 tháng 4 2020 lúc 21:24

Theo mình nghĩ là đúng!:)

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
H24
Xem chi tiết
H24

\(AB^2=AH^2+BH^2\)

\(AB=12^2+5^2=169\)

\(AB=\sqrt{169}=13\left(cm\right)\)

▲AHC vuông tại H ta có:

HC\(^2\)=\(AC^2-AH^2\)=\(20^2-12^2\)=256

\(\)Chu vi ▲ABC là:

AB+BC+AC=AB+BH+HC+AC=\(13+5+16+20=54\left(cm\right)\)

 

Bình luận (0)
H24
17 tháng 2 2022 lúc 10:36

Tham khảo: 

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = 122 + HC2

=> HC2 = 202 - 122

HC2 = 400 - 144 = 256 = 162

=> HC = 16 cm

Ta có : BC = HC + HB = 16 + 5 = 21 cm

Tam giác ABH vuông tại H nên :

AB2 = AH2 + HB2

AB2 = 122 + 52

AB2 = 144 + 25 = 169 = 132

=> AB = 13 cm

Vậy chu vi tam giác ABC là :

AB + AC + BC = 13 + 20 + 21 = 54 (cm)

Bình luận (0)
H24
17 tháng 2 2022 lúc 10:54

undefined

Ta có : \(\Delta ABH\) vuông tại H

Theo đl pytago ta có :   \(AH^2+BH^2=AB^2\)

-> \(AB=\sqrt{12^2+5^2}=13\left(cm\right)\)

 \(\Delta ACH\) vuông tại H

Theo đl pytago ta có :   \(AC^2-AH^2=CH^2\)

-. \(CH=\sqrt{20^2-12^2}=16\left(cm\right)\)

Chu vi \(\Delta ABC=AB+AC+BC=13+20+16+5=54\left(cm\right)\)

 

Bình luận (0)