Tìm các số nguyên x,y TM : \(8x^2y^2+x^2+y^2=10xy\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm các cặp số nguyên x;y thỏa mãn:
8x2y2+x2+y2=10xy
pt đã cho <=> 2.(2xy-1)2 +(x-y)2 =2
=> 2.(2xy-1)2 nhỏ hơn hoặc bằng 2. lại do x,y nguyên nên hoặc 2.(2xy-1)2=0 hoặc 2.(2xy-1)2=2
Tìm các số x,y nguyên tm: \(3x^2-2y^2-5xy+x-2y-7=0\)
\(3x^2-2y^2-5xy+x-2y-7=0\\ \Leftrightarrow\left(3x^2-6xy\right)+\left(xy-2y^2\right)+\left(x-2y\right)=7\\ \Leftrightarrow3x\left(x-2y\right)+y\left(x-2y\right)+\left(x-2y\right)=7\\ \Leftrightarrow\left(x-2y\right)\left(3x+y+1\right)=7=\left(-1\right)\left(-7\right)=1\cdot7\)
Từ đó liệt kê ra nhé
Tìm các cặp số nguyên x,y tm 2x^2-8x=13-3y^2
\(2x^2-8x=13-3y^2\)
\(\Leftrightarrow2x^2-8x+8=21-3y^2\)
\(\Leftrightarrow2\left(x-4\right)^2=21-3y^2\) (1)
Do \(2\left(x-4\right)^2\ge0;\forall x\Rightarrow21-3y^2\ge0\)
\(\Rightarrow y^2\le7\Rightarrow y^2=\left\{0;1;4\right\}\)
Mặt khác vế trái của (1) là chẵn, 21 là số lẻ \(\Rightarrow3y^2\) lẻ
\(\Rightarrow y^2\) lẻ \(\Rightarrow y^2=1\Rightarrow y=\pm1\)
Thế vào (1) \(\Rightarrow2\left(x-4\right)^2=18\Rightarrow\left(x-4\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(7;1\right);\left(7;-1\right);\left(1;1\right);\left(1;-1\right)\)
8x2y2 + x2 + y2=10xy
tìm các số nguyên x,y thỏa mãn
8x2y2+x2+y2=10xy8x2y2+x2+y2=10xy
⇔8x2y2−8xy+x2+y2−2xy=0⇔8x2y2-8xy+x2+y2-2xy=0
⇔2(4x2y2−4xy+1)+x2+y2−2xy=2⇔2(4x2y2-4xy+1)+x2+y2-2xy=2
⇔2(2xy−1)2+(x−y)2=2⇔2(2xy-1)2+(x-y)2=2
Nếu(2xy−1)2=0⇒(x−y)2=2(2xy-1)2=0⇒(x-y)2=2(vô nghiệm)
Nếu2(2xy−1)2=2⇒(x−y)2=0⇒x=y2(2xy-1)2=2⇒(x-y)2=0⇒x=y
(2x2−1)2=1⇒(2x2-1)2=1⇒[2x2−1=√12x2−1=√−1[2x2−1=12x2−1=−1 ⇒[x=−1;1x=0[x=−1;1x=0
Nếu(2xy−1)2≥2⇒2=2(2xy−1)2+(x−y)2≥4(2xy-1)2≥2⇒2=2(2xy-1)2+(x-y)2≥4(vô nghiệm)
Vậy (x;y)(x;y) thỏa mãn các cặp là (0;0);(1;1);(−1;−1)(0;0);(1;1);(-1;-1)
Tìm các số nguyên x , y thỏa mãn x^2 + y^2 + 10xy = -2x^2y^2.
Ai giải đc cho 10 tk
Tìm các số nguyên x,y thỏa mãn: \(8x^2+y^2-2xy-x^2y^2=0\)
\(8x^2y^2+x^2+y^2=10xy^{ }\)
\(8x^2y^2+x^2+y^2=10xy\). Tim x,y thuoc Z.
tìm các nghiệm nguyên của:
a) y(x-1)=x^2+2
b) 3xy-5x-2y=3
c) x^2-10xy-11y^2=13
d) xy-4=2x+3y
e) 5xy+x+2y=7