giải pt: ||x|-5|=x-3
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
giải pt : căn x-5- (x-14/3+căn x-5)=3
Sau gõ latex.
\(\sqrt{x-5}-\left(x-\dfrac{14}{3}+\sqrt{x-5}\right)=3\\ \Leftrightarrow\sqrt{x-5}-x+\dfrac{14}{3}-\sqrt{x-5}=3\\ \Leftrightarrow-x=3-\dfrac{14}{3}=-\dfrac{5}{3}\\ \Rightarrow x=-\dfrac{5}{3}:\left(-1\right)=\dfrac{5}{3}\)
Bài 1:
a) Giải PT sau: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
b) Giải PT sau: |2x+6|-x=3
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
Giải pt:(x+5)(x+2)-3(4x-3)=(5-x)2
(x - 5)(x - 1) + (x - 3)(x - 5) = 0
giải pt
(x-5)(x-1)+(x-3)(x-5)=0
<=> (x-5)(x-1+x-3)=0
<=> (x-5)(2x-4)=0
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\2x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\2x=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)
Vậy x={5;2}
(x-5)(x-1)+(x-3)(x-5)=0
=>(x-5)(x-1+x-3)=0
=>(x-5)(2x-4)=0
\(\Rightarrow\hept{\begin{cases}x-5=0\\2x-4=0\end{cases}\Rightarrow\hept{\begin{cases}x=5\\2x=4\end{cases}\Rightarrow}}\).....
\(\left(x-5\right)\left(x-1\right)+\left(x-3\right)\left(x-5\right)=0\)
\(< =>\left(x-5\right).\left(x-1+x-3\right)=0\)
\(< =>\left(x-5\right).\left(2x-4\right)=0\)
\(< =>\orbr{\begin{cases}x-5=0\\2x-4=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\2x=4\end{cases}< =>\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)
\((x-3)- \dfrac{(x-3)(2x-5)}{6}=\dfrac{(x-3)(3-x)}{4}\)
Giải pt
\(\Leftrightarrow\dfrac{12\left(x-3\right)-2\left(x-3\right)\left(2x-5\right)-3\left(x-3\right)\left(3-x\right)}{12}=0\)
\(\Leftrightarrow12x-36-2\left(2x^2-5x-6x+15\right)-3\left(3x-x^2-9+3x\right)=0\)
\(\Leftrightarrow12x-36-4x^2+22x-30-18x+3x^2+27=0\)
\(\Leftrightarrow-x^2+16x-39=0\)
\(\Delta=b^2-4ac=16^2-4.\left(-1\right).\left(-39\right)=100>0\)
\(\Rightarrow PT\) có 2 nghiệm pb \(x_1,x_2\)
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-16+10}{-2}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-16-10}{-2}=13\end{matrix}\right.\)
Vậy \(S=\left\{3;13\right\}\)
giải pt sau: x + (x+1)\(\sqrt{x+3}\)=5
ĐKXĐ: x+3>=0
=>x>=-3
\(x+\left(x+1\right)\sqrt{x+3}=5\)
=>\(x+\sqrt{\left(x+3\right)\left(x+1\right)^2}=5\)
=>\(x+\sqrt{\left(x+3\right)\left(x^2+2x+1\right)}=5\)
=>\(x+\sqrt{x^3+2x^2+x+3x^2+6x+3}=5\)
=>\(x+\sqrt{x^3+5x^2+7x+3}=5\)
=>\(x-1+\sqrt{x^3+5x^2+7x+3}-4=0\)
=>\(\left(x-1\right)+\dfrac{x^3+5x^2+7x+3-16}{\sqrt{x^3+5x^2+7x+3}+4}=0\)
=>\(\left(x-1\right)+\dfrac{x^3-x^2+6x^2-6x+13x-13}{\sqrt{x^3+5x^2+7x+3}+4}=0\)
=>\(\left(x-1\right)+\dfrac{\left(x-1\right)\left(x^2+6x+13\right)}{\sqrt{x^3+5x^2+7x+3}+4}=0\)
=>\(\left(x-1\right)\left(1+\dfrac{x^2+6x+13}{\sqrt{x^3+5x^2+7x+3}+4}\right)=0\)
=>x-1=0
=>x=1(nhận)
1) Giải pt
a. x + 2 = 0
b. (x - 3) (2x + 8) = 0
2) Tìm đkxđ của pt : \(\dfrac{x}{x-5}\)- \(\dfrac{7}{2}\)= 0
Câu 1:
a: x+2=0
nên x=-2
b: (x-3)(2x+8)=0
=>x-3=0 hoặc 2x+8=0
=>x=3 hoặc x=-4
a .
x + 2 = 0
=> x = 0 - 2 = -2
b ) .
<=> x - 3 = 0 ; 2x + 8 = 0
= > x = 3 ; x = -8/2 = -4
c ) .
ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5
1)
a) \(x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy S = {\(-2\)}
b) \(\left(x-3\right)\left(2x+8\right)=0\)
\(\Leftrightarrow x-3=0\) hoặc \(2x+8=0\)
*) \(x-3=0\)
\(\Leftrightarrow x=3\)
*) \(2x+8=0\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-4\)
Vậy S = \(\left\{-4;3\right\}\)
2) ĐKXĐ:
\(x-5\ne0\Leftrightarrow x\ne5\)
giải pt sau
(x+5)(x-3)=(x-4)(3+x)
Lời giải:
$(x+5)(x-3)=(x-4)(3+x)$
$\Leftrightarrow x^2+2x-15=x^2-x-12$
$\Leftrightarrow 3x=3\Rightarrow x=1$