Những câu hỏi liên quan
PT
Xem chi tiết
IN
24 tháng 2 2020 lúc 23:53

  Từ  : 

   \(x^3+y^3+z^3=x+y+z+2017\)  \(\implies\)  \(\left(x^3-x\right).\left(y^3-y\right).\left(z^3-z\right)=2017\left(1\right)\)

Chứng minh được :\(x^3-x=x.\left(x-1\right).\left(x+1\right)\)

\(y^3-y=y.\left(y-1\right).\left(y+1\right)\)

\(z^3-1=y.\left(y-1\right).\left(y+1\right)\)

Vì x, y, z  là các số nguyên nên

\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3

Do đó vế trái của (1) luôn chia hết cho 3 mà 2017 không chia hết cho 3

 Vậy không có số nguyên x,y,z nào thỏa mãn ycbt

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
TL
1 tháng 5 2020 lúc 9:03

Vì tổng là số lẻ nên cả 3 số hạng đều lẻ hoặc 1 lẻ, 1 chẵn

TH1: Cả 3 số hạng đều lẻ

=> x-y lẻ => x và y khác tính chẵn lẻ

y-z lẻ => y và z khác tính chẵn lẻ

x-z lẻ => z và x khác tính chẵn lẻ

=> x,y,z khác tính chẵn lẻ với nhau

Trong khi đó chỉ có 2 loại là chẵn và lẻ, không có loại thứ 3

TH2: 2 chẵn, 1 lẻ

Giả sử (x-y)3 chẵn, (y-z)3 chẵn; 5|z-x| lẻ

=> x-y chẵn => x;y cùng tính chẵn lẻ (1)

y-z chẵn => y;z cùng tính chẵn lẻ (2)

x-z lẻ => x;z cùng tính chẵn lẻ (3)

Từ (1)(2)(3) => x,z cùng tính chẵn lẻ, mâu thuẫn với (3)

TH (x-y)3 lẻ và (y-z)2 lẻ cho kết quả tương tự

Vậy không có x,y,z nguyên thỏa mãn bài toán

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 5 2020 lúc 9:39

\(Vì tổng là số lẻ nên cả 3 số hạng đều lẻ hoặc 1 lẻ, 1 chẵn TH1: Cả 3 số hạng đều lẻ => x-y lẻ => x và y khác tính chẵn lẻ y-z lẻ => y và z khác tính chẵn lẻ x-z lẻ => z và x khác tính chẵn lẻ => x,y,z khác tính chẵn lẻ với nhau Trong khi đó chỉ có 2 loại là chẵn và lẻ, không có loại thứ 3 TH2: 2 chẵn, 1 lẻ Giả sử (x-y)3 chẵn, (y-z)3 chẵn; 5|z-x| lẻ => x-y chẵn => x;y cùng tính chẵn lẻ (1) y-z chẵn => y;z cùng tính chẵn lẻ (2) x-z lẻ => x;z cùng tính chẵn lẻ (3) Từ (1)(2)(3) => x,z cùng tính chẵn lẻ, mâu thuẫn với (3) TH (x-y)3 lẻ và (y-z)2 lẻ cho kết quả tương tự Vậy không có x,y,z nguyên thỏa mãn bài toán\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 5 2020 lúc 9:39

Vì tổng là số lẻ nên cả 3 số hạng đều lẻ hoặc 1 lẻ, 1 chẵn
TH1: Cả 3 số hạng đều lẻ
=> x-y lẻ => x và y khác tính chẵn lẻ
y-z lẻ => y và z khác tính chẵn lẻ
x-z lẻ => z và x khác tính chẵn lẻ
=> x,y,z khác tính chẵn lẻ với nhau
Trong khi đó chỉ có 2 loại là chẵn và lẻ, không có loại thứ 3
TH2: 2 chẵn, 1 lẻ
Giả sử (x-y)3
 chẵn, (y-z)3
 chẵn; 5|z-x| lẻ
=> x-y chẵn => x;y cùng tính chẵn lẻ (1)
y-z chẵn => y;z cùng tính chẵn lẻ (2)
x-z lẻ => x;z cùng tính chẵn lẻ (3)
Từ (1)(2)(3) => x,z cùng tính chẵn lẻ, mâu thuẫn với (3)
TH (x-y)3
 lẻ và (y-z)2
 lẻ cho kết quả tương tự
Vậy không có x,y,z nguyên thỏa mãn bài toán

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
LP
Xem chi tiết
TT
Xem chi tiết
EC
Xem chi tiết
PT
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết