\(CMR:a^2+a+1⋮̸̸9\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho A= 1+6+6^2+....+6^9.CMR:A Chia43 du1
\(A=1+6+6^2+...+6^9\)
\(=1+\left(6+6^2+6^3\right)+\left(6^4+6^5+6^6\right)+\left(6^7+6^8+6^9\right)\)
\(=1+6\left(1+6+6^2\right)+6^4\left(1+6+6^2\right)+6^7\left(1+6+6^2\right)\)
\(=1+\left(1+6+6^2\right)\left(6+6^4+6^7\right)\)
\(=1+43\left(6+6^4+6^7\right)\)
Ta thấy \(43\left(6+6^4+6^7\right)⋮43\)
nên A chia 43 dư 1
Cho \(A=2\left(9^{2009}+9^{2008}+9+1\right)\)
CMR:A bằng tích 2 số tự nhiên liên tiếp
Câu 1:CMR:a)Với n thuộc N thì A=2.n+11...1 chia hết cho 3
b)Với a,b,n thuộc N thì B=(10^n-1).a+(11...1-n).b chia hết cho 9
Câu 2:CMR:a)Với n thuộc N thì 10^n+2 chia hết cho 3
b)88...8-9+n chia hết cho 9
giúp mình với!
A=10+102+103+....+102018.CMR:A<1/9.Các bn giúp mik nha!
Ta có :
\(A=10+10^2+10^3+...+10^{2018}\)
\(10A=10^2+10^3+10^4+...+10^{2019}\)
\(10A-A=\left(10^2+10^3+10^4+...+10^{2019}\right)-\left(10+10^2+10^3+...+10^{2018}\right)\)
\(9A=10^{2019}-10\)
\(A=\frac{10^{2019}-10}{9}\)
Vì \(\frac{10^{2019}-10}{9}>\frac{1}{9}\)\(\Rightarrow\)\(A>\frac{1}{9}\)\(\Rightarrow\)ĐỀ SAI
+) Cho a,b,c>0 tm: abc=1
\(CMR:a^3+b^3+c^3+\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}\ge\dfrac{9}{2}\)
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)
\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)
\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)
\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho a/k=x/9;b/k=y/b
CMR:a^2/b^2 = x/y cho a/k=x/9;b/k=y/b
Ta có:
\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\) (1)
\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\) (2)
Chia (1) cho (2) ta được:
\(\frac{a^2}{b^2}=\frac{k.x}{k.y}=\frac{x}{y}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\left(đpcm\right).\)
Chúc bạn học tốt!
Giúp mình với
A=1/4+1/9+1/16+.....+1/81+1/100
CMR:A>65/132
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)
\(A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{11}\)
\(=\frac{65}{132}\)
vậy \(A>\frac{65}{132}\)
Ta có
A=122 +132 +142 +...+192 +1102
A>122 +13.4 +14.5 +...+19.10 +110.11
=122 +13 −14 +14 −15 +...+19 −110 +110 −111
=122 +13 −111
=65132
vậy A>65132
K CHO MK NHA
Ta có:A=1/10+1/102+1/103+......+1/102018.CMR:A<1/9.
Cho A= 3/12.22+5/22.32+7/32.42+...+19/92.102
CMR:A<1