Những câu hỏi liên quan
DT
Xem chi tiết
NT
4 tháng 9 2023 lúc 21:22

a: \(=a\left(y^2-2yz+z^2\right)\)

\(=a\left(y-z\right)^2\)

b: \(=\left(x^2+6xy+9y^2\right)-16\)

=(x+3y)^2-16

=(x+3y+4)(x+3y-4)

c: \(=7\left(a-b\right)+\left(a-b\right)\left(a+b\right)\)

=(a-b)(7+a+b)

d: \(36x^4-13x^2\)

=x^2*36x^2-x^2*13

=x^2(36x^2-13)

f: x^2-2xy+y^2-49

=(x-y)^2-49

=(x-y-7)(x-y+7)

e: 2x^3-18x

=2x(x^2-9)

=2x(x-3)(x+3)

g: 2x+2y-x^2-xy

=2(x+y)-x(x+y)

=(x+y)(2-x)

h: (x^2+3)^2+16

=x^4+6x^2+25

=x^4+10x^2+25-4x^2

=(x^2+5)^2-4x^2

=(x^2-2x+5)(x^2+2x+5)

Bình luận (1)
4A
Xem chi tiết
NG
18 tháng 10 2021 lúc 13:41

a) \(2xy-y+6x-3=\left(2xy+6x\right)-\left(y+3\right)=2x\left(y+3\right)-\left(y+3\right)=\left(2x-1\right)\left(y+3\right)\)

b) \(x^2-2xy-x+2y=\left(x^2-2xy\right)-\left(x-2y\right)=x\left(x-2y\right)-\left(x-2y\right)=\left(x-1\right)\left(x-2y\right)\)

Bình luận (0)
TP
Xem chi tiết
LP
2 tháng 10 2023 lúc 21:46

\(f\left(x\right)=x^6+x^3-x^2-1\)

\(f\left(x\right)=x^6-x^3+2x^3-2x^2+x^2-1\)

\(f\left(x\right)=x^3\left(x-1\right)\left(x^2+x+1\right)+2x^2\left(x-1\right)+\left(x-1\right)\left(x+1\right)\)

\(f\left(x\right)=\left(x-1\right)\left(x^5+x^4+x^3+2x^2+x+1\right)\)

 Xét đa thức \(g\left(x\right)=x^5+x^4+x^3+2x^2+x+1\) có bậc 5 là số lẻ. Khi đó giả sử tồn tại 2 đa thức \(h\left(x\right)\) và \(j\left(x\right)\) hệ số nguyên sao cho:

 \(g\left(x\right)=h\left(x\right).j\left(x\right)\). Khi đó 1 trong 2 đa thức \(h\left(x\right),j\left(x\right)\) phải có bậc lẻ (vì nếu cả 2 đều bậc chẵn thì thành thử bậc của \(g\left(x\right)\) phải chẵn, mâu thuẫn theo trên).

 Không mất tổng quát, giả sử đa thức \(h\left(x\right)\) có bậc lẻ. Khi đó nếu nó có nghiệm hữu tỉ thì gọi nghiệm hữu tỉ này là \(x=\dfrac{p}{q}\left(p,q\inℤ;\left(p,q\right)=1\right)\) thì \(p|1,q|1\) nên \(x=\pm1\). Thử lại, ta thấy 2 nghiệm này đều không thỏa mãn.

 Do đó, \(g\left(x\right)\) không có nghiệm vô tỉ nên ta không thể phân tích tiếp \(f\left(x\right)\) thành nhân tử được nữa.

Bình luận (0)
TM
Xem chi tiết
NM
22 tháng 11 2021 lúc 8:11

\(=x^3+2x^2-8x=x\left(x^2+2x-8\right)\\ =x\left(x^2-2x+4x-8\right)\\ =x\left(x-2\right)\left(x+4\right)\)

Bình luận (0)
H24
22 tháng 11 2021 lúc 8:14

=x(x2+2x+1)-32

=x(x+1)2-32

=x(x+1-3)(x+1+3)

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
H24
27 tháng 10 2023 lúc 21:14

Để phân tích đa thức thành nhân tử, ta có thể sử dụng phương pháp phân tích hệ số hoặc sử dụng định lý nhân tử của đa thức. Trong trường hợp này, chúng ta sẽ sử dụng phương pháp phân tích hệ số.

Đa thức: x^4 - 2x^3 + 10x^2 + 9x + 14

Đầu tiên, chúng ta sẽ tìm các ước của hệ số tự do (14). Các ước của 14 là ±1, ±2, ±7 và ±14. Tiếp theo, chúng ta sẽ thử từng ước này vào đa thức để kiểm tra xem có tồn tại nhân tử nào cho đa thức hay không.

Thử với ước 1: 1^4 - 2(1)^3 + 10(1)^2 + 9(1) + 14 = 32

Thử với ước -1: (-1)^4 - 2(-1)^3 + 10(-1)^2 + 9(-1) + 14 = 16

Thử với ước 2: 2^4 - 2(2)^3 + 10(2)^2 + 9(2) + 14 = 58

Thử với ước -2: (-2)^4 - 2(-2)^3 + 10(-2)^2 + 9(-2) + 14 = 10

Thử với ước 7: 7^4 - 2(7)^3 + 10(7)^2 + 9(7) + 14 = 2064

Thử với ước -7: (-7)^4 - 2(-7)^3 + 10(-7)^2 + 9(-7) + 14 = 1288

Thử với ước 14: 14^4 - 2(14)^3 + 10(14)^2 + 9(14) + 14 = 25088

Thử với ước -14: (-14)^4 - 2(-14)^3 + 10(-14)^2 + 9(-14) + 14 = 20096

Dựa vào kết quả trên, ta thấy rằng không có ước nào cho đa thức. Do đó, ta kết luận rằng đa thức x^4 - 2x^3 + 10x^2 + 9x + 14 không thể phân tích thành nhân tử trong trường số thực.

Bình luận (0)
NY
Xem chi tiết
DM
15 tháng 7 2016 lúc 20:34

a) xy+3x-7y-21

=x(y+3)-7(x+3)

=(x-7)(y+3)

b)2xy-15-6x-5y

=2x(y-3)-5(-3+y)

=(2x-5)(y-3)

c)2x^2y+2xy^2-2x-2y

=2x(xy-1)+2y(xy-1)

=(2x+2y)(xy-1)

x(x+3)-5x(x-5)-5(x+3)

=(x-5)(x+3)-5x(x-5)

=(x-5)(x+3-5x)

Bình luận (0)
DM
15 tháng 7 2016 lúc 20:35

Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn

Bình luận (0)
TL
15 tháng 7 2016 lúc 20:45

a) xy+3x-7y-21=(xy+3x)-(7y+21)= x(y+3)-7(y+3)=(y+3)(x-7)

b)2xy-15-6x+5y=(2xy-6x)+(5y-15)=2x(y-3)+5(y-3)=(y-3)(2x+5)

c)2x^2y+2xy^2-2x-2y=2xy(x+y)-2(x+y)=2(x+y)(xy-1)

d) x(x+3)-5x(x-5)-5(x+3)=[x(x+3)-5(x+3)]-5x(x-5)=(x+3)(x-5)-5x(x-5)=(x-5)(x+3-5x)=(x-5)(3-4x)

Bình luận (0)
DV
Xem chi tiết
LL
19 tháng 8 2021 lúc 17:03

b) \(3x^2+2x-5=3\left(x-1\right)\left(x+\dfrac{5}{3}\right)\)

c) \(3-2x-x^2=-\left(x-1\right)\left(x+3\right)\)

d) \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)

e) \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)

 

Bình luận (0)
NT
19 tháng 8 2021 lúc 23:09

b: \(3x^2+2x-5\)

\(=3x^2-3x+5x-5\)

\(=\left(x-1\right)\left(3x+5\right)\)

c: \(3-2x-x^2\)

\(=-\left(x^2+2x-3\right)\)

\(=-\left(x+3\right)\left(x-1\right)\)

d: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)

e: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)

 

Bình luận (0)
H24
Xem chi tiết
NM
12 tháng 10 2021 lúc 15:39

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

Bình luận (0)
TT
28 tháng 11 2021 lúc 10:48
Lol .ngudoots
Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
MA
1 tháng 10 2016 lúc 15:36

a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

b) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)

\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)

\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

c) \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)

Bình luận (0)