Những câu hỏi liên quan
KB
Xem chi tiết
NL
7 tháng 4 2022 lúc 1:08

Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)

\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\)

\(\Rightarrow x^2+yz\le xy+xz\)

\(\Rightarrow zx^2+yz^2\le xyz+xz^2\)

\(\Rightarrow P\le x^3+y^3+z^3+8\left(xy^2+xz^2+xyz\right)\)

\(\Rightarrow P\le x^3+y^3+z^3+3yz\left(y+z\right)+8\left(xy^2+xz^2+2xyz\right)\)

\(\Rightarrow P\le x^3+\left(y+z\right)^3+8x\left(y+z\right)^2\)

\(\Rightarrow P\le x^3+\left(4-x\right)^3+8x\left(4-x\right)^2\)

\(\Rightarrow P\le8x^3-52x^2+80x+64\)

Tới đây, đơn giản nhất là khảo sát hàm \(f\left(x\right)=8x^3-52x^2+80x+64\) trên \(\left[0;4\right]\)

(Nếu ko khảo sát hàm, ta có thể tách như sau, tất nhiên là dựa trên điểm rơi có được từ việc khảo sát hàm):

\(\Rightarrow P\le\left(8x^3-52x^2+80x-36\right)+100\)

\(\Rightarrow P\le4\left(x-1\right)^2\left(2x-9\right)+100\)

Do \(0\le x\le4\Rightarrow2x-9< 0\Rightarrow P\le100\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;3;0\right)\) và 1 vài bộ hoán vị của chúng

Bình luận (0)
HM
Xem chi tiết
NL
14 tháng 3 2022 lúc 10:11

\(\dfrac{xy^2}{y^2+2}=\dfrac{xy^2}{\dfrac{y^2}{2}+\dfrac{y^2}{2}+2}\le\dfrac{xy^2}{3\sqrt[3]{\dfrac{y^4}{2}}}=\dfrac{1}{3}x\sqrt[3]{2y^2}\le\dfrac{1}{9}x\left(2+y+y\right)=\dfrac{2}{9}\left(x+xy\right)\)

Tương tự: \(\dfrac{yz^2}{z^2+2}\le\dfrac{2}{9}\left(y+yz\right)\) ; \(\dfrac{zx^2}{x^2+2}\le\dfrac{2}{9}\left(z+zx\right)\)

Cộng vế:

\(P\le\dfrac{2}{9}\left(x+y+z+xy+yz+zx\right)\le\dfrac{2}{9}\left(x+y+z+\dfrac{1}{3}\left(x+y+z\right)^2\right)=4\)

Dấu "=" xảy ra khi \(x=y=z=2\)

Bình luận (0)
ND
Xem chi tiết
ND
Xem chi tiết
HN
Xem chi tiết
SG
24 tháng 4 2023 lúc 23:17

\(P=\Sigma\dfrac{x}{x+yz}=\Sigma\dfrac{x}{x(x+y+z)+yz}=\Sigma\dfrac{x}{x^2+xy+xz+yz} \\=\Sigma\dfrac{x}{(x+y)(x+z)}=\dfrac{2(xy+yz+zx)}{(x+y)(y+z)(z+x)}\)

Bất đẳng thức phụ: \(\Pi(x+y)\ge\dfrac{8}{9}(\Sigma x)(\Sigma xy)\)

\(\Leftrightarrow \Sigma(x^2y+x^2z-2xyz)\ge0\) ( đúng do AM-GM )

Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z\)

Áp dụng vào bài toán chính: 

\(P\le\dfrac{2(xy+yz+zx)}{\dfrac{8}{9}(\Sigma x)(\Sigma xy)}=\dfrac{9}{4}\)

Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z=\dfrac{1}{3}\)

Vậy \(\max P =\dfrac{9}{4} \) khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (0)
LB
Xem chi tiết
NQ
2 tháng 7 2017 lúc 21:29

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

Bình luận (0)
H24
2 tháng 7 2017 lúc 21:38


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

Bình luận (0)
LB
2 tháng 7 2017 lúc 21:40
sai rồi hehe
Bình luận (0)
TV
Xem chi tiết
NT
22 tháng 6 2019 lúc 17:47

Ta chứng minh \(\frac{x^4+y^4}{x^2+y^2}\ge\frac{\frac{\left(x^2+y^2\right)^2}{2}}{x^2+y^2}=\frac{x^2+y^2}{2}\)

Tương tự và cộng lại

\(\Rightarrow VT\ge x^2+y^2+z^2\ge xy+xz+yz=3\)

Bình luận (0)
TV
22 tháng 6 2019 lúc 20:03

chứng minh kiểu j vậy bạn ? , Chỉ mình rõ hơn được không ? 

Bình luận (0)
TY
Xem chi tiết
ND
Xem chi tiết