Tìm x: 2(3x-1)(x-2)-6(x-1)(x+3)=7x-3
NHỜ MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!
Tìm x,biết
b) |3/4x-5|-2/3=|-1/4|
a) (3x-1) (-1/4 - 5x) (-2/7x + 3)=0
c)|-2/5 - 3x| - |-7/9 + 2x|=0
d) |-3/7x - 1| + |5+2/3x|=0
e)|3x-1|+|9x^2 - 1|=0
f) x+2/2018 + x+4/2016 = x+6/2014 - 1
Mọi người giải giúp e với ạ chiều e phải nộp r
ngu thế à bạn
mọi người ơi giúp em với ạ ! giải chi tiết giúp em ạ
1) 3x+2/6- 3x-2/4= 15/8
2) x+2/3+x - x/3-x= 8x-6/9-x ngũ 2
mọi người ơi giúp em với ạ ! giải chi tiết giúp em ạ
1) 3x+2/6- 3x-2/4= 15/8
2) x+2/3+x - x/3-x= 8x-6/9-x ngũ 2
\(1,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\\ \Leftrightarrow\dfrac{4\left(3x+2\right)}{24}-\dfrac{6\left(3x-2\right)}{24}-\dfrac{45}{24}=0\\ \Leftrightarrow12x+24-18x+12-45=0\\ \Leftrightarrow-6x-9=0\\ \Leftrightarrow x=-\dfrac{3}{2}\)
2, ĐKXĐ:\(x\ne\pm3\)
\(\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{x\left(3+x\right)}{\left(3+x\right)\left(3-x\right)}-\dfrac{8x-6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6-3x-x^2-8x+6}{\left(3+x\right)\left(3-x\right)}=0\\ \Leftrightarrow-2x^2-10x+12=0\\ \Leftrightarrow x^2+5x-6=0\\ \Leftrightarrow\left(x-1\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)
\(a,\dfrac{3x+2}{6}-\dfrac{3x-2}{4}=\dfrac{15}{8}\)
\(\Leftrightarrow4\left(3x+2\right)-6\left(3x-2\right)=45\)
\(\Leftrightarrow12x+8-18x+12=45\)
\(\Leftrightarrow12x-18x=45-12-8\)
\(\Leftrightarrow-6x=25\)
\(\Leftrightarrow x=\dfrac{-25}{6}\)
Vậy \(S=\left\{\dfrac{-25}{6}\right\}\)
\(b,\dfrac{x+2}{3+x}-\dfrac{x}{3-x}=\dfrac{8x-6}{9-x^2}\left(ĐKXĐ:x\ne3;x\ne-3\right)\)
\(\Leftrightarrow\left(x+2\right)\left(3-x\right)-x\left(3+x\right)=8x-6\)
\(\Leftrightarrow3x-x^2+6-2x-3x-x^2=8x-6\)
\(\Leftrightarrow-x^2-x^2+3x-2x-3x-8x=-6+6\)
\(\Leftrightarrow-2x^2-10x=0\)
\(\Leftrightarrow-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=5\left(nhận\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;5\right\}\)
a,3x^2(x^2-2x+5) b,(x+1)(2x-3) c,(2x^3-3×^2+x+15):(2x+3) d,5/x+2 +3-x/x^2-5 Mọi người giúp mình với, mình cần luôn nên mọi người làm luôn hộ mình luôn với ạ
tìm A. a) A(x-5)/x^2-4x-5=3x^2+9x/x^2+4x+3
b) x^2+x-6/A(x+3)=(5x-1)(x-2)/5x^3-x^2+15x-3
c)x^2-25/2x^2+7x-15=(x-5)A/2x^2+x-6
mong mọi ng làm giúp ạ
b: \(\Leftrightarrow\dfrac{x-2}{A}=\dfrac{\left(5x-1\right)\left(x-2\right)}{x^2\left(5x-1\right)+3\left(5x-1\right)}=\dfrac{x-2}{x^2+3}\)
hay \(A=x^2+3\)
Tìm x biết :|x+1| + |2x+15| + |3x+6041| = 7x
giúp em với mọi người đang cần gấp ạ
Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x, do đó :
\(\left|x+1\right|+\left|2x+15\right|+\left|3x+6041\right|\ge0\forall x\)
\(\Leftrightarrow7x\ge0\)
\(\Leftrightarrow x\ge0\)
Từ điều kiện này của x ta có phương trình :
\(x+1+2x+15+3x+6041=7x\)
\(\Leftrightarrow6x+6057=7x\)
\(\Leftrightarrow7x-6x=6057\)
\(\Leftrightarrow x=6057\)
Vậy tập nghiệm của pt là S = { 6057 }
Tìm số nguyên x,y biết:
a)2xy-2x+3y=-9
b)(x+1)2.(y-3)=-4
c)(x+3)2+(2y-1)2<44
d)(x2-1)(x2-6)<0
GIÚP MÌNH VỚI Ạ. MÌNH CẦN GẤP. MỌI NGƯỜI GIẢI THEO CÁCH HỌC CỦA TOÁN 6. MÌNH CẢM ƠN MỌI NGƯỜI
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
c) \(\left(x+3\right)^2+\left(2y-1\right)^2< 44\)
\(\Leftrightarrow\left(x+3\right)^2< 44-\left(2y-1\right)^2< 44\) (do \(-\left(2y-1\right)^2\le0\)) (1)
mà (x + 3)2 là số chính phương
Kết hợp (1) ta được \(\left(x+3\right)^2\le36\)
\(\Leftrightarrow\left(x+3\right)^2\le6^2\Leftrightarrow\left(x+3\right)^2\in\left\{0;1;4;9;25;36\right\}\)
Với (x + 3)2 \(\in\left\{0;1;4\right\}\) ta được (2y - 1)2 \(\in\left\{0;1;4;9;25;36\right\}\)
Với (x + 3)2 \(\in\left\{9;16\right\}\) ta được (2y - 1)2 \(\in\left\{0;1;4;9;25\right\}\)
Với (x + 3)2 = 25 ta được (2y - 1)2 \(\in\left\{0;1;4;9;16\right\}\)
Với (x + 3)2 = 36 ta được (2y - 1)2 \(\in\left\{0;1;4;9\right\}\)
1. Giải các phương trình sau:
a) \(\dfrac{7x-2}{3}=\dfrac{3x+1}{4}\) b) \(\dfrac{3x-1}{x+1}=\dfrac{2x+1}{x-1}\)
2. Tìm A : \(\dfrac{x^2+2xy+y^2}{x-y}=\dfrac{A}{x^2-y^2}\)
Giúp em với mọi người ơiii
1:
a: =>28x-8=9x+3
=>19x=11
=>x=11/19
b: =>(3x-1)(x-1)=(2x+1)(x+1)
=>3x^2-4x+1=2x^2+3x+1
=>x^2-7x=0
=>x=0 hoặc x=7
tìm x:
a) (x/2 -1)3 + 2=-11/8
b) (x/3 + 1/2) (75% -1 1/2x)=0
GIÚP MÌNH VỚI Ạ. CÁC BẠN LÀM THEO CÁCH LỚP 6. CẢM ƠN MỌI NGƯỜI^^
`@` `\text {Ans}`
`\downarrow`
`a)`
\(\left(\dfrac{x}{2}-1\right)^3+2=-\dfrac{11}{8}\) phải k bạn nhỉ? `11/8` k có bậc lũy thừa nào `=5` á.
`=>`\(\left(\dfrac{x}{2}-1\right)^3=-\dfrac{11}{8}-2\)
`=>`\(\left(\dfrac{x}{2}-1\right)^3=-\dfrac{27}{8}\)
`=>`\(\left(\dfrac{x}{2}-1\right)^3=\left(-\dfrac{3}{2}\right)^3\)
`=>`\(\dfrac{x}{2}-1=-\dfrac{3}{2}\)
`=>`\(\dfrac{x}{2}=-\dfrac{3}{2}+1\)
`=>`\(\dfrac{x}{2}=-\dfrac{1}{2}\)
`=> x=1`
Vậy, `x=1`
`b)`
\(\left(\dfrac{x}{3}+\dfrac{1}{2}\right)\left(75\%-1\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}+\dfrac{1}{2}=0\\0,75-1\dfrac{1}{2}x=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{1}{2}\\-\dfrac{3}{2}x=\dfrac{75}{100}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=-3\\-3x\cdot100=2\cdot75\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\-3x\cdot100=150\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\-3x=1,5\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x={-3/2; -1/2}.`