so sánh
\(\left(-8\right)^9\)và \(\left(-32\right)^5\)
(9+1)\(\left(9^2+^21\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(9^{64}-1\)
So sánh
964 - 1 = (932 + 1)(932 - 1) = ... = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(9 + 1)(9 - 1) > (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(9 + 1)
964=(932+1).(932-1)
=(932+1)(916+1)(916-1)
=(932+1)(916+1)(98+1)(98-1)
=(932+1)(916+1)(98+1)(94+1)(94-1)
=(932+1)(916+1)(98+1)(94+1)(92+1)(92-1)
=(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)(9-1)
Vì (932+1)(916+1)(98+1)(94+1)(92+1)(9+1)(9-1)>(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)
=>964-1>(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)
\(9^{64}-1\)
\(=\left(9^{32}+1\right)\left(9^{32}-1\right)\)
\(=\left(9^{32}+1\right)\left(9^{16}+1\right)\left(9^{16}-1\right)\)
\(...\)
\(=\left(9^{32}+1\right)\left(9^{16}+1\right)\left(9^8+1\right)\left(9^4+1\right)\left(9^2+1\right)\left(9+1\right)\left(9-1\right)\)
\(\Rightarrow9^{64}-1>\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
SO SÁNH A VÀ B BIẾT :\(A=5^{32}\)
VÀ \(B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=5^{32}-1< 5^{32}\)
Vậy \(B< A\)
so sánh \(\left(-16\right)^{11}\left(-32\right)^9\)
Ta có:
\(\left(-16\right)^{11}=-16^{11}=-\left(2^4\right)^{11}=-2^{4\cdot11}=-2^{44}\)
\(\left(-32\right)^9=-32^9=-\left(2^5\right)^9=-2^{5\cdot9}=-2^{45}\)
Mà: \(44< 45\)
\(\Rightarrow2^{44}< 2^{45}\)
\(\Rightarrow-2^{44}>-2^{45}\)
1.so sánh:
a)\(5^6\)và\(\left(-2\right)^{14}\)
b)\(9^5\)và \(27^3\)
c) \(\left(\frac{1}{8}\right)^6\) và \(\left(\frac{1}{32}\right)^4\)
b) \(9^5=3^{2\cdot5}=3^{10}\)
\(27^3=3^{3\cdot3}=3^9\)
=> tự kết luận
c) \(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}^3\right)^6=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}^5\right)^4=\left(\frac{1}{2}\right)^{20}\)
=> tự kết luận
1.so sánh:
a)\(5^6\)và\(\left(-2\right)^{14}\)
b)\(9^5\)và \(27^3\)
c) \(\left(\frac{1}{8}\right)^6\) và \(\left(\frac{1}{32}\right)^4\)
b) Ta có: \(9^5=\left(3^2\right)^5=3^{10}\)
\(27^3=\left(3^3\right)^3=3^9\)
Vì 10 > 9 => 310 > 39
Vậy 95 > 273
1. So sánh :
b) 9^5 và 27^3
9^5 = ( 3^2 )^5 = 3^10
27^3 = ( 3^3 )^3 = 3^9
Vì 3^10 > 3^9 => 9^5 > 27^3
Vậy 9^5 > 27^3
c) \(\left(\frac{1}{8}\right)^6\)và \(\left(\frac{1}{32}\right)^4\)
\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}\right)^{3.6}=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}\right)^{5.4}=\left(\frac{1}{2}\right)^{20}\)
Vì ( 1/2)^18 < (1/2)^20 => (1/8)^6 < (1/32)^4
Vậy (1/8)^6 < (1/32)^4
a) ta có \(\hept{\begin{cases}\left(-2\right)^{14}=\left(-2^7\right)^2=128^2\\5^6=5^{3.2}=\left(5^3\right)^2=125^2\end{cases}}\)
vì \(128>125\Rightarrow128^2>125^2\Rightarrow5^6< \left(-2\right)^{14}\)
vậy \(5^6< \left(-2\right)^{14}\)
b) ta có \(\hept{\begin{cases}27^3=\left(3^3\right)^3=3^9\\9^5=\left(3^2\right)^5=3^{10}\end{cases}}\)
vì \(3^{10}>3^9\Rightarrow9^5>27^3\)
vậy \(9^5>27^3\)
c) ta có \(\hept{\begin{cases}\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}\right)^{18}\\\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}\right)^{20}\end{cases}}\)
vì \(18< 20\Rightarrow\left(\frac{1}{2}\right)^{18}< \left(\frac{1}{2}\right)^{20}\Rightarrow\left(\frac{1}{8}\right)^6< \left(\frac{1}{32}\right)^4\)
vậy \(\left(\frac{1}{8}\right)^6< \left(\frac{1}{32}\right)^4\)
So Sánh : \(\left(-32\right)^{27}\)và\(\left(-18\right)^{39}\)
Ta có: \(32^{27}=\left(2^5\right)^{27}=2^{135}\)
\(16^{39}=\left(2^4\right)^{39}=2^{156}\)
mà \(2^{135}< 2^{156}\)
nên \(32^{27}< 16^{39}\)
mà \(16^{39}< 18^{39}\)
nên \(32^{27}< 18^{39}\)
\(\Leftrightarrow-32^{27}>-18^{39}\)
\(\Leftrightarrow\left(-32\right)^{27}>\left(-18\right)^{39}\)
so sánh A và B biết:
A=\(\left[0.8\cdot7+\left(0.8\right)^2\right]\cdot\left(1.25\cdot7-\frac{4}{5}\cdot1.25\right)-47.86\)
B=\(\frac{\left(1.09-0.29\right)\cdot\frac{5}{4}}{\left(18.9-16.65\right)\cdot\frac{8}{9}}\)
\(A=\left[0,8\cdot7+(0,8)^2\right]\cdot\left[1,25\cdot7-\frac{4}{5}\cdot1,25\right]-47,86\)
\(=0,8\cdot(7+0,8)\cdot1,25\cdot(7-0,8)-47,86\)
\(=0,8\cdot7,8\cdot1,25\cdot6,2-47,86\)
\(=48,36-47,86=0,5\)
\(B=\frac{(1,09-0,29)\cdot\frac{5}{4}}{(18,9-16,65)\cdot\frac{8}{9}}=\frac{0,8\cdot1,25}{2,25\cdot\frac{8}{9}}=\frac{1}{2}\)
\(A:B=0,5:\frac{1}{2}=\frac{1}{2}:\frac{1}{2}=\frac{1}{2}\cdot2=1\)
A gấp 1 lần B
??????????????????
tính và so sánh
\(A=3^{32}-1\)
\(B=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right)\left(3^{16}+1\right)\)
\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(.........\)
\(=\frac{1}{2}\left(3^{32}-1\right)\)\(< \)\(3^{32}-1\)\(=\)\(A\)
Vậy \(B< A\)
A=1.853020189*10 \(^{15}\)
B= 9.265100944*10\(^{15}\)
tự so sánh
Xét B ta có:
\(2B=2\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(2B=\left(3-1\right)\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(2B=\left(3^2-1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(2B=\left(3^4-1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(2B=\left(3^8-1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(2B=\left(3^{16}-1\right).\left(3^{16}+1\right)\)
\(2B=3^{32}-1\)
\(B=\frac{3^{32}-1}{2}< A=3^{32}-1\)
Vậy B < A
So sánh
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)vàC=3^{32}-1\)
Baì này mình mới làm lúc sáng bạn vào câu hỏi tương tự có đấy
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{2}< 3^{32}-1=C\)