Những câu hỏi liên quan
NH
Xem chi tiết
LN
4 tháng 8 2017 lúc 10:41

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

Bình luận (0)
NH
4 tháng 8 2017 lúc 13:37

cảm ơn bạn nha

mình k cho ban roi do

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
LL
25 tháng 11 2024 lúc 20:05

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿

Bình luận (0)
NH
Xem chi tiết
NA
Xem chi tiết
NV
Xem chi tiết
NL
3 tháng 1 2018 lúc 15:53

Ek bạn , bạn có chơi nr ko

Bình luận (0)
NV
3 tháng 1 2018 lúc 15:51

kb nha minh t i c k nha

Bình luận (0)
BM
3 tháng 1 2018 lúc 17:05

Trả lời kiểu gì zậy

Bình luận (0)
DN
Xem chi tiết
NT
3 tháng 5 2016 lúc 20:33

 Đặt n = a²(b+c)+b²(c+a)+c²(a+b) 
Xuất phát từ đẳng thức: (cái này bạn tự biến đổi tương đương nhé) 
(a+b)(b+c)(c+a) = a²(b+c)+b²(c+a)+c²(a+b) - 2abc 
=> n = (a+b)(b+c)(c+a) - 2abc 
Dễ thấy với a,b,c > 0 thì: tồn tại 1 trong 3 số a+b hoặcb+c hoặc c+a chẵn 
=> (a+b)(b+c)(c+a) chia hết cho 2 hay n = (a+b)(b+c)(c+a) - 2abc chia hết cho 2 
Để n nguyên tố thì chỉ có thể xảy ra n = 2. Nhưng do: 
n = a²(b+c)+b²(c+a)+c²(a+b) ≥ 1².(1+1) + 1².(1+1) + 1².(1+1) = 6 > 2 nên không thỏa mãn. 
Vậy trong a,b,c có ít nhất 1 số bằng 0. Nhưng a,b,c cũng không thể đồng thời bằng 0 và không thể có 2 số bằng 0 (vì khi đó đều dẫn tới n = 0) nên chỉ có thể xảy ra trường hợp: a,b,c có đúng một số bằng 0 
Không mất tính tổng quát giả sử: c = 0 thì: n = ab(b+a) 
để n nguyên tố thì: ab = 1 hoặc a+b = 1 nhưng a+b ≥ 1+1=2 nên ab = 1 => a = b = 1 
Khi đó: n = 1.1.(1+1) = 2 (thỏa) 
Kết luận: ta có các cặp số (a,b,c) thỏa mãn bài là (1,1,0) và các hoán vị. 
Khi đó n = 2 nguyên tố. 

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết