Những câu hỏi liên quan
LL
Xem chi tiết
NP
Xem chi tiết
NT
27 tháng 8 2023 lúc 9:58

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)

\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)

Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)

b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)

\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)

Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)

c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)

\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)

Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)

Bình luận (1)
H24
Xem chi tiết
DC
Xem chi tiết
HN
31 tháng 1 2017 lúc 10:17

Ta thấy : \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow ad=bc\)(1)

Ta có:   (a+2c)(b+d)=(a+c)(b+ad)

<=> ab+ad+2bc+2cd=ab+2ad+bc+2cd

<=> ab+ad+2bc+2cd-ab-2ad-bc-2cd=0

<=>-ad+bc=0<=>bc-ad=0<=>ad=bc=>(1) luôn đúng

=>ĐFCM

Bình luận (0)
DN
Xem chi tiết
ML
Xem chi tiết
NH
12 tháng 2 2017 lúc 19:20

Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+c}{b+d}=\frac{a+2c}{a+2d}\Leftrightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)

Bình luận (0)
VH
Xem chi tiết
BD
12 tháng 7 2016 lúc 14:56

Đk d,b khác 0 , a khác c ,b khác d.

Vì a/b = c/d suy ra c =a.k và d=b.k suy ra a-c/b-d =a-ak/b-bk =a(1-k)/b(1-k)=a/b (ĐPCM) 

Bình luận (0)
NP
Xem chi tiết
NT
Xem chi tiết
KR
27 tháng 6 2017 lúc 9:13

Ta có :

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)

\(\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

Bình luận (0)
TC
27 tháng 6 2017 lúc 9:13

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

    Ta có đc:\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)

                   \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)

             Từ (1) và (2) suy ra đc:\(\frac{a}{a-b}=\frac{c}{c-d}\)

Bình luận (0)