cho ti le thuc a/b=c/d.Chung minh rang :(a+2c)(b=d)=(a+c)(b+2d)
cho ti le thuc a/b=c/d chung minh rang (a+2c)(b+d)=(a+c)(b+2d)
cho ti le thuc a/b = c/d ,chung to rang a,3a + 2b / a = 3c + 2d / c ; b, 2a - 3b/ b = 2c - 3d / b ; c, a/ a-2b = c/c-2d giup minh voi dang can gap
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)
\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)
Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)
b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)
\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)
Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)
c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)
\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)
Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)
cho ti le thuc a/b=c/d
chung minh rang a+2c/b+2d=a-3c/b-3d
Cho ti le thuc a/b=c/d cmr (a+2c)(b+d)=(a+c)(b+2d)
Ta thấy : \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow ad=bc\)(1)
Ta có: (a+2c)(b+d)=(a+c)(b+ad)
<=> ab+ad+2bc+2cd=ab+2ad+bc+2cd
<=> ab+ad+2bc+2cd-ab-2ad-bc-2cd=0
<=>-ad+bc=0<=>bc-ad=0<=>ad=bc=>(1) luôn đúng
=>ĐFCM
tìm x y z biết 2x+xy-y=5
cho ti le thuc a/b=c/d chung minh (a+2c)*(b+d)=(a+c)*(b+2d)
cho ti le thuc: \(\frac{a}{b}=\frac{c}{d}\). CMR; (a+ 2c)(b+d)= (a+ c)(b+2d)
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+c}{b+d}=\frac{a+2c}{a+2d}\Leftrightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)
chung minh rang tu ti le thuc a/b=c/d ta suy ra duoc ti le thuc a/b=a-c/b-d
Đk d,b khác 0 , a khác c ,b khác d.
Vì a/b = c/d suy ra c =a.k và d=b.k suy ra a-c/b-d =a-ak/b-bk =a(1-k)/b(1-k)=a/b (ĐPCM)
chung minh rang tu ti le thuc a/b=c/d (a-b khac 0,c-d khac 0) ta co the suy ra ti le thuc a+b/a-b=c+d/c-d
cho ti le thuc a/b=c/d chung minh rang a/a-b=c/c-d
Ta có :
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)
\(\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có đc:\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
Từ (1) và (2) suy ra đc:\(\frac{a}{a-b}=\frac{c}{c-d}\)