Tìm x:
\(\sqrt{x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}}=2\)
Bài 1: Tính :
\(C=\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(D=\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
Bài 2 : Cho \(P=\left(\frac{1}{\sqrt{x}-1}+\frac{x-\sqrt{x}+6}{x+\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{x-\sqrt{x}-2}{x+\sqrt{x}+2}\right)\)
a, Rút gọn P
b, Tìm GTNN
c, Tìm x để \(P.\frac{x-1}{x^2+8x}< -2\)
Tìm ĐKXĐ và rút gọn biểu thức
\(A=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(B=\left(\frac{2\sqrt{x}-x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{x-1}{x+\sqrt{x}+1}\)
\(C=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(D=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
CM rằng GT của bthức A ko phụ thuộc vào a
Tìm x để C = 4
Tìm x sao cho D < -1
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
\(P=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}+\frac{\sqrt{x}}{2+\sqrt{x}}-\frac{4x+2\sqrt{x}-4}{x-4}\right):\left(\frac{2}{2-\sqrt{x}}-\frac{\sqrt{x}+3}{2\sqrt{x}-x}\right)\)
Tìm x để P>0 Tìm x để P=-1
1. Tìm GTNN của biểu thức P = \(\frac{x-2\sqrt{x}}{1+\sqrt{x}}\)
2. Tìm x thỏa mãn x<=1 để A.B = \(\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}.\frac{4\sqrt{x}+4}{2+\sqrt{x}}\)\(=-1\)
3. M = \(\frac{2-5\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}+1}{\sqrt{x}+3}\). So sánh \(M\)và \(\sqrt{M}\)
4. Tìm x để \(C=1-\sqrt{x}\inℤ\)
Cho hai biểu thức $A=\frac{4 \sqrt{x}}{\sqrt{x}-1} ; B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}$ với $x \geq 0 ; x \neq 1$
1. Tính giá trị biểu thức $A$ khi $x=49$;
2. Chứng minh $B=\frac{\sqrt{x}+1}{\sqrt{x}-1}$;
3. Cho $P=A: B$. Tìm giá trị của $x$ để $P(\sqrt{x}+1)=x+4+\sqrt{x-4}$.
Em gửi ảnh trên ạ !!!!!
a, Ta có \(x=49\Rightarrow\sqrt{x}=7\)
Thay vào biểu thức A ta được :
\(A=\frac{7.4}{7-1}=\frac{28}{6}=\frac{14}{3}\)
b, Với \(x\ge0;x\ne1\)
\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)( đpcm )
Cho \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{2\sqrt{x}+7}{x-4}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+1\right)\)
Tìm m để P = M
Mik đag cần gấp giải giúp vs
Cho biểu thức B=\((\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{5\sqrt{x}+2}{4-x}):\frac{3\sqrt{x-x}}{x+\sqrt{x}+4}\)
a) Rút gọn B
b) Tìm x để B=2
c)Tìm x để B nhận giá trị âm
Cho biểu thức P=\((\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}):(\frac{\sqrt{x}-2+10-x}{\sqrt{x}+2})\)
a) Rút gọn P
b)Tìm các giá trị nguyên của x để biểu thức Q=\((-\sqrt{x}-1)\)P nhận đc giá trị nguyên
A = \(\frac{3x-2\sqrt{x}-4}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
a) Rút gọn
b)Tìm A khi x=4+2√3
Rút gọn \(\left(\frac{\sqrt{x}}{2+\sqrt{x}}-\frac{x+4}{4-x}\right)\div\left(\frac{2\sqrt{x}+1}{x-2\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
Tìm x để A = \(\frac{-1}{9}\)