Những câu hỏi liên quan
PB
Xem chi tiết
CT
30 tháng 7 2017 lúc 4:54


Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 12 2017 lúc 6:34

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 1 2018 lúc 10:12

Đặt  t = f ( x ) = x 2 - 4 x + 5 .

ta có  f ' ( x ) = x - 2 x 2 - 4 x + 5 và  f ' = 0 ⇔ x = 2

Xét x> 0 ta có bảng biến thiên

Khi đó phương trình đã cho trở thành  m= t2+ t- 5hay  t2+ t- 5-m= 0       (*) 

Nếu phương trình (* ) có nghiệm t1; t2  thì t1+ t2= -1.

Do đó (*) có nhiều nhất 1 nghiệ m t ≥  1.

Vậy phương trình đã cho có đúng 2 nghiệm dương khi và chỉ khi phương trình (*) có đúng 1 nghiệm t  (1; 5).

+  Đặt  g(t) = t2+ t- 5. Ta đi tìm m để phương trình (*)  có đúng 1 nghiệm t  (1; 5).

Ta có g’(t) = 2t + 1 > 0, ∀  (1; 5).

Bảng biến thiên:

Từ bảng biến thiên suy ra  là các giá trị cần tìm.

Chọn  B.

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 3 2018 lúc 3:06

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 12 2018 lúc 10:33

Đáp án D

Bình luận (0)
H24
Xem chi tiết
NL
14 tháng 12 2020 lúc 22:39

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

Bình luận (0)
NL
14 tháng 12 2020 lúc 22:44

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

Bình luận (0)
NL
14 tháng 12 2020 lúc 22:55

3.

Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)

\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)

\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)

Mặt khác:

\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)

\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)

(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)

Bình luận (0)
NA
Xem chi tiết
AH
18 tháng 1 2024 lúc 19:50

Lời giải:

Để pt có 2 nghiệm pb thì: $\Delta'=4-(3-m)>0$

$\Leftrightarrow m+1>0\Leftrightarrow m>-1(*)$
Khi đó, áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:

$x_1+x_2=4$

$x_1x_2=3-m$

Để $0\leq x_1< x_2<3$ thì:

\(x_2,x_1\geq 0\Leftrightarrow \left\{\begin{matrix}\ x_1x_2=3-m\geq 0\\ x_1+x_2=4\geq 0\end{matrix}\right.\Leftrightarrow m\leq 3(**)\)

\(x_2,x_2<3\Leftrightarrow \left\{\begin{matrix} x_1+x_2<6\\ (x_1-3)(x_2-3)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4<6\\ x_1x_2-3(x_1+x_2)+9>0\end{matrix}\right.\)

\(\Leftrightarrow 3-m-12+9>0\Leftrightarrow m<0(***)\)

Từ $(*); (**); (***)\Rightarrow -1< m< 0$

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 3 2017 lúc 4:06

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 2 2019 lúc 16:05

Chọn B

Điều kiện: ,

đặt .

Khi đó phương trình trở thành .

Tìm GTLN – GTNN của hàm .

Bình luận (0)