Cho hàm số y = -mx + m+2 có đồ thị là (d). Tìm m để khoảng cách từ gốc tọa độ O đến (d) là lớn nhất
Cho hàm sô y = 2x + m − 3 có đồ thị là đường thằng (d) (với m là tham sỗ).
a) Tìm m đề khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng √5.
b) Tìm m để khoảng cách từ gốc tọa độ O đến đường thăng (d) nhỏ nhất.
cho hàm số bậc nhất y=(m-2)+m+1 có đồ thị là đường thẳng (d)
tìm m để khoảng cách gốc tọa độ O(0;0) đến (d) đạt GTLN
cho hàm số bậc nhất y=(m-2)+m+1 có đồ thị là đường thẳng (d)
tìm m để khoảng cách gốc tọa độ O(0;0) đến (d) đạt GTLN
cho hàm số : y=mx-2 Tìm m để đồ thị hàm số cách gốc tọa độ 1 khoảng bằng 1
Tìm m để đồ thị hàm số cách gốc tọa độ 1 khoang lớn nhất
giúp_mình_với_ạ
Cho đường thẳng (d): y-mx+2
a) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) lớn nhất
b) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) bằng 1
Cho đường thẳng (d): y-mx+2
a) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) lớn nhất
b) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) bằng 1
Bạn viết sai rồi, đường thẳng y-mx+2 =0 hay y=mx+2 vậy bạn?
Cho hàm số y = (m - 1)x + 4 (m≠1) có đồ thị là đường thẳng (d)
a) Tìm m để đồ thị hàm số đi qua điểm A(1; 2)
b) Tìm m sao cho khoảng cách từ gốc tọa độ đến (d) bằng 2
a: Thay x=1 và y=2 vào y=(m-1)x+4, ta được:
1(m-1)+4=2
=>m-1+4=2
=>m+3=2
=>m=-1
b:
(d): y=(m-1)x+4
=>(m-1)x-y+4=0
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)
Để d(O;(d))=2 thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)
=>\(\sqrt{\left(m-1\right)^2+1}=2\)
=>\(\left(m-1\right)^2+1=4\)
=>\(\left(m-1\right)^2=3\)
=>\(m-1=\pm\sqrt{3}\)
=>\(m=\pm\sqrt{3}+1\)
Cho đường thẳng (d): y-mx+2
a) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) lớn nhất
b) tìm m để khoảng cách từ gốc tọa độ (O) đến (d) bằng 1
Cho hai đường thẳng (d):y=2x-2 và (d’) :y=(m+1) x+6 (m≠-1)
a)Vẽ đồ thị hàm số (d):y=2X-2
B)Tìm m để đồ thị hai hàm số (d)và (d’) có thị song song với nhau
c)Tìm m để khoảng cách từ gốc tọa độ o đến đường thẳng (d’) bằng 3√2
a:
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}m+1=2\\6< >-2\left(đúng\right)\end{matrix}\right.\)
=>m+1=2
=>m=1
c:
(d'): y=(m+1)x+6
=>(m+1)x-y+6=0
Khoảng cách từ O đến (d') là:
\(d\left(O;\left(d'\right)\right)=\dfrac{\left|0\cdot\left(m+1\right)+0\cdot\left(-1\right)+6\right|}{\sqrt{\left(m+1\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}\)
Để \(d\left(O;\left(d'\right)\right)=3\sqrt{2}\) thì \(\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}=3\sqrt{2}\)
=>\(\sqrt{\left(m+1\right)^2+1}=\sqrt{2}\)
=>\(\left(m+1\right)^2+1=2\)
=>\(\left(m+1\right)^2=1\)
=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)