Tìm x, y nguyên dương thỏa mãn \(x^2y^2-16xy+99=9x^2+36y^2+13x+26y\)
tìm x,y nguyên dương thỏa mãn:\(x^2y^2-16xy+99=9x^2+36y^2+13x+26y\)
tìm x,y>0 thỏa mãn \(x^2y^2-16xy+99=9x^2+36y^2+13x+26y\)
\(x^2y^2-16xy+99=9x^2+36y^2+13x+26y\)
\(\Leftrightarrow\left(xy+10\right)^2=9\left(x+2y\right)^2+13\left(x+2y\right)+1\)
Khi đó ta dễ thấy:
\(\left(3x+6y\right)^2< \left(xy+10\right)^2< \left(3x+6y+2\right)^2\)
\(\Rightarrow\left(xy+10\right)^2=\left(3x+6y+1\right)^2\)
Đến đây thì quá dễ rồi nhá, bạn tự làm nốt
Tìm nghiệm nguyên dương của phương trình x^2y^2 − 16xy + 99 = 9x^2 + 36y^2 + 13x + 26y
Tìm nghiệm nguyên dương của phương trình x2y2 − 16xy + 99 = 9x2 + 36y2 + 13x + 26y.
Tìm x, y thỏa mãn phương trình \(x^2y^4-16xy^3+68y^2-4xy+x^2=0\)
\(\Leftrightarrow\left(x^2y^4-16xy^3+64y^2\right)+\left(4y^2-4xy+x^2\right)=0\)
\(\Leftrightarrow\left(xy^2-8y\right)^2+\left(2y-x\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy^2-8y=0\\2y-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy^2-8y=0\\x=2y\end{matrix}\right.\)
\(\Rightarrow2y.y^2-8y=0\)
\(\Leftrightarrow2y\left(y^2-4\right)=0\Rightarrow\left[{}\begin{matrix}y=0\Rightarrow x=0\\y=2\Rightarrow x=4\\y=-2\Rightarrow x=-4\end{matrix}\right.\)
Tìm tất cả các cặp số nguyên dương ( x; y) thỏa mãn điều kiện
\(x^2y^2-2xy+141=4x^2+36y^2+7x+21y\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
\(\Leftrightarrow x^2y^2+22xy+141=4\left(x^2+6xy+9y^2\right)+7\left(x+3y\right)\)
\(\Leftrightarrow\left(xy+11\right)^2+20=4\left(x+3y\right)^2+7\left(x+3y\right)\)
\(\Leftrightarrow16\left(xy+11\right)^2+320=64\left(x+3y\right)^2+112\left(x+3y\right)\)
\(\Leftrightarrow\left(4xy+44\right)^2+369=\left(8x+24y+7\right)^2\)
\(\Leftrightarrow\left(8x+24y-4xy-37\right)\left(8x+24y+4xy+51\right)=369\)
Pt ước số
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
a) Tìm các số nguyên dương x,y thỏa mãn 2(x+y)+16=3xy
b)Tìm các số nguyên dương x,y thỏa mãn x2 - 2y2 = 5
c) CMR: đa thức B = 5x2 + 5y2 + 5z2 + 6xy -8xz - 8yz
d) CM số A = 99...9800...01 ( có n chữ số 9 và n chữ số 0) là số chính phương
tìm x,y,z nguyên dương thỏa mãn xy=y^2 và x^2+y^2+99=7^2
\(hpt\Leftrightarrow\hept{\begin{cases}xy=y^2\\x^2+y^2=-50\end{cases}}\)
Dễ thấy: \(VT=x^2+y^2\ge0>-50=VP\)
sai đề
7y^2 giúp cái tui cx mắc ở bài này