Những câu hỏi liên quan
HD
Xem chi tiết
LP
3 tháng 9 2019 lúc 12:46

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(\sqrt{3}+2\right)^2}}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(\sqrt{3}+2\right)}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3}-20}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)

\(\sqrt{4+\sqrt{5\left(\sqrt{3}+5-\sqrt{3}\right)}}\)

\(\sqrt{4+\sqrt{25}}\)

\(\sqrt{4+5}=3\)

Bình luận (0)
ZG
Xem chi tiết
HT
25 tháng 6 2018 lúc 10:42

\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}.\)

\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3+4+2\sqrt{12}}}}\)

\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(\sqrt{3}+\sqrt{4}\right)^2}}}\)

\(\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(\sqrt{5\sqrt{3}+5\sqrt{25+3-2.\sqrt{25.3}}}\)

\(\sqrt{5\sqrt{3}+5\sqrt{\left(\sqrt{25}-\sqrt{3}\right)^2}}\)

\(\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(\sqrt{25}=5\)

Bình luận (0)
ZG
25 tháng 6 2018 lúc 10:48

cho mình hỏi tại sao  10\(\sqrt{\left(\sqrt{3}+\sqrt{4}\right)^2}\)lại bằng  10\(\sqrt{3}\)

Bình luận (0)
HT
25 tháng 6 2018 lúc 10:51

là tại vì \(10\sqrt{\left(\sqrt{3}+\sqrt{4}\right)^2}..\)

\(10\left(\sqrt{3}+2\right)=10\sqrt{3}+20\)

Bình luận (0)
H24
Xem chi tiết
DQ
5 tháng 10 2020 lúc 18:38

b) \(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
H24
18 tháng 6 2021 lúc 16:53

`(5sqrt{1/5}+1/2sqrt{20}-5/4sqrt{4/5}+sqrt{5}):2/5

`=(sqrt5+1/2*2sqrt5-sqrt{5/4}+sqrt5):2/5`

`=(sqrt5+sqrt5+sqrt5-sqrt5/2):2/5`

`=(5/2*sqrt5):2/5`

`=25/4sqrt5`

 

Bình luận (0)
H24
18 tháng 6 2021 lúc 16:54

`1/3sqrt{48}+3sqrt{75}-sqrt{27}-10sqrt{1 1/3}`

`=1/3*4sqrt3+3*5sqrt3-3sqrt3-10sqrt{4/3}`

`=4/sqrt3+15sqrt3-3sqrt3-20/sqrt3`

`=12sqrt3-16/sqrt3`

Bình luận (0)
CD
Xem chi tiết
WR
23 tháng 6 2019 lúc 19:35

a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)

\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)

b) Tương tự a) đ/s =5

Bình luận (0)
GD
Xem chi tiết
NT
14 tháng 7 2021 lúc 14:15

Ta có: \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)

=5

Bình luận (0)
TH
Xem chi tiết
HL
3 tháng 9 2017 lúc 16:33

 \(=\sqrt{5.\left(\sqrt{3}+1\right)}.\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}\)

\(=\sqrt{5}.\left(\sqrt{3}+1\right).\sqrt{48-10.\left(2+\sqrt{3}\right)}\)

\(=\left(\sqrt{15}+\sqrt{5}\right).\sqrt{28-10\sqrt{3}}\)

\(=\left(\sqrt{15}+\sqrt{5}\right).\sqrt{\left(5-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{15}+\sqrt{5}\right).\left(5-\sqrt{3}\right)\)

Vậy...

~ Chắc chắn đúng cậu nhé ~ Tiếc gì 1 tk cho tớ nào?

Bình luận (0)
NP
Xem chi tiết
NT
19 tháng 7 2021 lúc 21:08

Bài 1:

a) Ta có: \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}}+\sqrt{5}\right)\)

\(=\left(\sqrt{5}+\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)\)

\(=3\sqrt{5}-\dfrac{1}{2}\sqrt{5}\)

\(=\dfrac{5}{2}\sqrt{5}\)

c) Ta có: \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)

\(=\dfrac{\sqrt{35}\left(\sqrt{5}-\sqrt{7}+2\sqrt{2}\right)}{\sqrt{35}}\)

\(=2\sqrt{2}+\sqrt{5}-\sqrt{7}\)

Bình luận (0)
NT
19 tháng 7 2021 lúc 22:44

Bài 2:

e) ĐKXĐ: \(\dfrac{4}{3}\le x\le6\)

Ta có: \(\sqrt{6-x}=3x-4\)

\(\Leftrightarrow6-x=\left(3x-4\right)^2\)

\(\Leftrightarrow9x^2-24x+16+6-x=0\)

\(\Leftrightarrow9x^2-25x+22=0\)

\(\Delta=\left(-25\right)^2-4\cdot9\cdot22=625-792< 0\)

Vậy: Phương trình vô nghiệm

 

Bình luận (0)
TM
Xem chi tiết
LH
23 tháng 9 2017 lúc 20:41

a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

nhân cả hai vế với \(\sqrt{2}\), ta được:

\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)

\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)

\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)

\(=\sqrt{7}-1-\sqrt{7}-1\)

\(=-2\)

\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)

Bình luận (0)
H24
12 tháng 5 2018 lúc 18:48

a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

Bình luận (0)
CL
4 tháng 10 2020 lúc 16:40

wwreftr

Bình luận (0)
 Khách vãng lai đã xóa