Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HY
Xem chi tiết
LM
Xem chi tiết
LD
30 tháng 8 2020 lúc 17:16

D = 2x2 + 9y2 - 6xy - 6x + 12y + 2012

= [ ( x2 - 6xy + 9y2 ) - 4x + 12y + 4 ] + ( x2 - 2x + 1 ) + 2007

= [ ( x - 3y )2 - 2( x - 3y ).2 + 22 ] + ( x - 1 )2 + 2007

= ( x - 3y + 2 )2 + ( x - 1 )2 + 2007

\(\hept{\begin{cases}\left(x-3y+2\right)^2\\\left(x-1\right)^2\end{cases}}\ge0\forall x\Rightarrow\left(x-3y+2\right)^2+\left(x-1\right)^2+2007\ge2007\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3y+2=0\\x-1=0\end{cases}}\Rightarrow x=y=1\)

=> MinD = 2007 <=> x = y = 1

E = x2 - 2xy + 4y2 - 2x - 10y + 29 ( -10y mới ra đc nhé, mò mãi :v )

= [ ( x2 - 2xy + y2 ) - 2x + 2y + 1 ] + ( 3y2 - 12y + 12 ) + 16

= [ ( x - y )2 - 2( x - y ) + 12 ] + 3( y2 - 4y + 4 ) + 16

= ( x - y - 1 )2 + 3( y - 2 )2 + 16

\(\hept{\begin{cases}\left(x-y-1\right)^2\\3\left(y-2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-y-1\right)^2+3\left(y-2\right)^2+16\ge16\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

=> MinE = 16 <=> x = 1 ; y = 2

F = \(\frac{3}{2x-x^2-4}\)

Để F đạt GTNN => 2x - x2 - 4 đạt GTLN

Ta có : 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 < 0 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinF = \(\frac{3}{-3}=-1\)<=> x = 1

G = \(\frac{2}{6x-5-9x^2}\)

Để G đạt GTNN => 6x - 5 - 9x2 đạt GTLN

Ta có 6x - 5 - 9x2 = -9( x2 - 2/3x + 1/9 ) - 4 = -9( x - 1/3 )2 - 4 ≤ -4 < 0 ∀ x

Đẳng thức xảy ra <=> x - 1/3 = 0 => x = 1/3

=> MinG = \(\frac{2}{-4}=-\frac{1}{2}\)<=> x = 1/3

Bình luận (0)
 Khách vãng lai đã xóa
OM
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
DL
Xem chi tiết
DH
29 tháng 8 2017 lúc 13:20

bài 1 dễ òy tự lm mà nâng cao kiến thức ;))

Bài 2 ) làm mẫu ý b ; a vận dụng làm tương tự

Gọi \(A=\frac{x}{\left(x+100\right)^2}\)Ta có : \(A=\frac{x}{x^2+200x+10000}\)

\(\Leftrightarrow Ax^2+200Ax+10000A=x\)

\(\Leftrightarrow Ax^2+200Ax-x+10000A=0\)

\(\Leftrightarrow Ax^2+\left(200A-1\right)x+10000A=0\)

Để pt trên có nghiệm thì \(\Delta=\left(200A-1\right)^2-4.A.10000A\ge0\)

\(\Leftrightarrow40000A^2-400A+1-40000A^2\ge0\)

\(\Leftrightarrow-400A+1\ge0\Rightarrow A\le\frac{1}{400}\) có max là \(\frac{1}{400}\)

Dấu "=" xảy ra \(\Leftrightarrow x=100\)

Vậy \(A_{max}=\frac{1}{400}\) tại \(x=100\)

Bình luận (0)
DL
29 tháng 8 2017 lúc 15:40

Alo, cho hỏi cái bạn. cái tam giác là gì thế??? Giải giúp luôn bài 1 đi =((

Bình luận (0)
DD
Xem chi tiết
XO
23 tháng 8 2021 lúc 15:07

Ta có : A = 9x2 - 6x + 2 

= 9x2 - 6x + 1 + 1 = (3x - 1)2 + 1 \(\ge\)

=> Min A = 1

Dấu "=" xảy ra <=> 3x - 1 = 0 

<=> x = 1/3

Vậy Min A = 1 <=> x = 1/3

b) Ta có 2B = 4x2 + 4x + 2 

= 4x2 + 4x + 1 + 1 

= (2x + 1)2 + 1 \(\ge\)1

=> B \(\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> 2x + 1 = 0 

<=> x = -1/2

Vậy Min B = 1/2 <=> x = -1/2

c) C = (2x - 1)2 + (x - 2)2 

= 5x2 - 8x + 5

=> 5C = 25x2 - 40x + 25 

 = 25x2 - 40x + 16 + 9 

= (5x - 4)2 + 9 \(\ge9\)

=> \(C\ge\frac{9}{5}\)

Dấu "=" xảy ra <=> 5x - 4 = 0 

<=> x = 0,8

Vậy Min C = 9/5 <=> x = 0,8

d) D = 3x2 + 5x = \(3\left(x^2+\frac{5}{3}x\right)=3\left(x^2+2.\frac{5}{6}x+\frac{25}{36}-\frac{25}{36}\right)=3\left(x+\frac{5}{6}\right)^2-\frac{25}{12}\ge-\frac{25}{12}\)

=> \(D\ge-\frac{25}{12}\)

Dấu "=" xảy ra <=> x + 5/6 = 0 

<=> x = -5/6

Vậy Min D = -25/12 <=> x = -5/6e) E = (x -2)(x - 3)(x + 5)x

= (x2 - 5x + 6)(x2 + 5x)

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết
NN
29 tháng 8 2020 lúc 16:47

a) Đặt \(x=1+m\)và \(y=1-m\)khi đó \(x+y=2\)

Ta có: \(C=x^2+y^2+7=\left(1+m\right)^2+\left(1-m\right)^2+7\)

\(=1+2m+m^2+1-2m+m^2+7=2m^2+9\)

Vì \(m^2\ge0\forall x\)\(\Rightarrow2m^2\ge0\forall m\)\(\Rightarrow2m^2+9\ge9\forall m\)

Dấu " = " xảy ra \(\Leftrightarrow m=0\)\(\Rightarrow x=y=1\)

Vậy \(minC=9\)\(\Leftrightarrow x=y=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
TK
21 tháng 5 2019 lúc 15:25

Xét \(A\ge-\frac{1}{2}\)

<=> \(\frac{6x+11}{x^2-2x+3}\ge-\frac{1}{2}\)

<=> \(x^2-2x+3\ge-12x-22\)

<=> \(x^2+10x+25\ge0\)<=> \(\left(x+5\right)^2\ge0\)(luôn đúng) 

Vậy \(MinA=-\frac{1}{2}\)khi x=-5

Bình luận (0)