Những câu hỏi liên quan
KG
Xem chi tiết
AH
30 tháng 4 2021 lúc 0:24

Lời giải:

$a^2+b^2+1011-(ab+a+b)=\frac{2a^2+2b^2+2022-2ab-2a-2b}{2}$

$=\frac{(a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)+2020}{2}$

$=\frac{(a-b)^2+(a-1)^2+(b-1)^2+2020}{2}$

$\geq \frac{2020}{2}>0$

$\Rightarrow a^2+b^2+1011> ab+a+b$

Ta có đpcm.

Bình luận (0)
ES
Xem chi tiết
LP
1 tháng 6 2023 lúc 9:00

Ta có \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\) 

\(=\sqrt{2a\left(a+b+c\right)+\dfrac{b^2-2bc+c^2}{2}}\)

\(=\sqrt{\dfrac{4a^2+b^2+c^2+4ab+4ac-2bc}{2}}\)

\(=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\)

\(\le\sqrt{\dfrac{\left(2a+b+c\right)^2}{2}}\)

\(=\dfrac{2a+b+c}{\sqrt{2}}\).

Vậy \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\). Lập 2 BĐT tương tự rồi cộng vế, ta được \(VT\le\dfrac{2a+b+c+2b+c+a+2c+a+b}{\sqrt{2}}\)

\(=\dfrac{4\left(a+b+c\right)}{\sqrt{2}}\) \(=\dfrac{4.1011}{\sqrt{2}}\) \(=2022\sqrt{2}\)

ĐTXR \(\Leftrightarrow\) \(\left\{{}\begin{matrix}ab=0\\bc=0\\ca=0\\a+b+c=1011\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(1011;0;0\right)\) hoặc các hoán vị. Vậy ta có đpcm.

Bình luận (0)
H24
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 9 2018 lúc 14:38

a) 3m6cm =  306.cm

b) 1011 + 1011 + 1011 + 1011 = 1011  x4 =  4044                                   ….

c) Chữ số La Mã được viết XI đọc là:mười một

Bình luận (0)
HL
Xem chi tiết

Giải:

Ta có: A=1011-1/1012-1

       10A=10.(1011-1)/1012-1

       10A=1012-10/1012-1

       10A=1012-1-9/1012-1

       10A=1012-1/1012-1 - 9/1012-1

       10A=1-9/1012-1

Tương tự: B=1010+1/1011+1

              10B=1+9/1011+1

Vì -9/1012-1 < 9/1011+1 nên 10A < 10B

Vậy A<B

Chúc bạn học tốt!

Bình luận (0)
GT
Xem chi tiết