Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DD
Xem chi tiết
KL
Xem chi tiết
NT
17 tháng 8 2021 lúc 22:07

a: Ta có: \(-\left(x+5\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x+5\right)^2+2021\le2021\forall x\)

Dấu '=' xảy ra khi x=-5

Bình luận (1)
MA
Xem chi tiết
PM
Xem chi tiết
DP
Xem chi tiết
H24
Xem chi tiết
DP
18 tháng 12 2017 lúc 18:18

hello

Bình luận (0)
CN
Xem chi tiết
TL
28 tháng 6 2020 lúc 9:47

Tìm cách giải: A là phân số dương có tử số là 2020 không đổi. Vì vậy, muốn A đạt GTLN thì (a+b) phảo đạt GTNN. Để tìm (a+b)min ta phải tìm các giá trị có thể có của a và b rồi tìm các GTNN của a và b. Ta thấy ngay tù \(\frac{1}{a}+\frac{1}{b}< 1\Rightarrow a,b>1\). Chú ý tính chất nghịch đảo của 1 số tự nhiên m,n khác 0: m>n thì \(\frac{1}{m}< \frac{1}{n}\)

Giải

Do \(\frac{1}{a}+\frac{1}{b}< 1\Rightarrow a,b>1\). Không mất tính tổng quát giả sử: 1<a\(\le b\)

\(\Rightarrow1>\frac{1}{a}\ge\frac{1}{b}\). Ta có \(\frac{1}{a}+\frac{1}{b}\le\frac{1}{a}+\frac{1}{a}\)hay \(\frac{7}{10}\le\frac{2}{a}\Rightarrow2\le2\frac{6}{7}\)

Do a\(\inℕ;a>1\)nên a=2(1)

Với a=2 ta có \(\frac{7}{10}< \frac{1}{2}+\frac{1}{b}< 1\Leftrightarrow\frac{1}{5}< \frac{1}{6}< \frac{1}{2}\Rightarrow b\in\left\{3;4\right\}\left(2\right)\)

Từ (1) và (2) ta có min(a+b)=2+3=5

Vậy maxA=\(\frac{2020}{5}=404\)

Bình luận (0)
 Khách vãng lai đã xóa
TB
Xem chi tiết
DA
Xem chi tiết
PN
18 tháng 8 2021 lúc 21:48

ban hoc lop may vay

Bình luận (0)
 Khách vãng lai đã xóa