cho 2 số x,y là các số thực dương CMR : 1/x+1/y = 4/x+y
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x,y là các số thực dương thỏa mãn : x+y=1 CMR \(\frac{x}{1-x^2}+\frac{y}{1-y^2}\ge\frac{4}{3}\)
c1: phân tích từng cái
c2, nhân x cho (1) y cho 2
sau đs dùng bunhia
từ x+y=1
=> x^2-xy+y^2...
\(VT-VP=\frac{\left(3x^2+7xy+3y^2\right)\left(x-y\right)^2}{3\left(1-x^2\right)\left(1-y^2\right)}\ge0\)
Áp dụng giả thiết x + y = 1, ta được:\(\frac{x}{1-x^2}+\frac{y}{1-y^2}=\frac{x}{\left(1+x\right)\left(1-x\right)}+\frac{y}{\left(1+y\right)\left(1-y\right)}=\frac{x}{y\left(1+x\right)}+\frac{y}{x\left(1+y\right)}\)
Theo bất đẳng thức AM - GM:\(\frac{x}{y\left(1+x\right)}+\frac{y}{x\left(1+y\right)}\ge2\sqrt{\frac{x}{y\left(1+x\right)}.\frac{y}{x\left(1+y\right)}}=\frac{2}{\sqrt{xy+x+y+1}}=\frac{2}{\sqrt{xy+2}}\ge\frac{2}{\sqrt{\frac{\left(x+y\right)^2}{4}+2}}=\frac{4}{3}\)Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = 1/2
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
Cho x,y là các số thực dương thỏa mãn x + y = 1. CMR:
\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{25}{2}\)
\(VT=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2\)
\(VT\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho x,y là các số thực dương thỏa mãn đồng thời các điều kiên:
1) \(\left(x+2\right)\left(y+2\right)=3\left(x^2+y^2+\sqrt{xy}\right)\)
2) \(\left(\sqrt{x}+\sqrt{y}\right)^3=4\left(x^3+y^3\right)\)
CMR: \(\sqrt{x}+\sqrt{y}=2\)
Cho x,y là 2 số thực dương. CMR:
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{1}{4}\)
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{x\sqrt{y}+y\sqrt{x}}{2\sqrt{xy}}-\frac{x+y}{2}=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\)
Cần chứng minh : \(\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\le\frac{1}{4}\Leftrightarrow\sqrt{x}+\sqrt{y}-x-y\le\frac{1}{2}\Leftrightarrow2\sqrt{x}+2\sqrt{y}-2x-2y\le1\)
\(\Leftrightarrow2x+2y-2\sqrt{x}-2\sqrt{y}+1\ge0\)\(\Leftrightarrow\left(\sqrt{2x}-\frac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2y}-\frac{1}{\sqrt{2}}\right)^2\ge0\)
Vì BĐT cuối luôn đúng nên BĐT cần chứng minh luôn đúng khi x = y = \(\frac{1}{4}\)
\(VT=\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{\sqrt{2xy\left(x+y\right)}}{x+y}-\frac{x+y}{2}\)
\(\le\frac{\left(x+y\right)\sqrt{\frac{x+y}{2}}}{x+y}-\frac{x+y}{2}\) . Cm : \(\sqrt{\frac{x+y}{2}}-\frac{x+y}{2}\le\frac{1}{4}\)
Đặt \(x+y=t>0\)thì :
\(\sqrt{\frac{t}{2}}-\frac{t}{2}\le\frac{1}{4}\Leftrightarrow-\frac{1}{4}\left(\sqrt{2t}-1\right)^2\le0\) ( đúng )
Chúc bạn học tốt !!!
cho x;y;z là các số thực dương thỏa mãn x+y+z=1.CMR:
\(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{zx}{z^2+x^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{15}{4}\)
vì x+y+z=1nên
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)
nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)
\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)
dau = xay ra khi x=y=z=1/3
cho x,y,z là 3 số thực dương thỏa mãn x2+y2+z2=\(\dfrac{3}{4}\)
Cmr:2(1-x)(1-y)\(\ge\)z
Với mọi x;y;z ta luôn có:
\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)
\(\Leftrightarrow2+2xy-2x-2y\ge z\)
\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)
cho các số thực dương x , y thỏa mãn x + y = 2 . CMR \(\frac{x}{1+y^2}+\frac{y}{1+x^2}\ge1\)
Áp dụng BĐT: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)( tự c/m)
Dấu " = " xảy ra <=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Áp dụng: \(\frac{x}{1+y^2}+\frac{y}{1+x^2}=\frac{x^2}{x+xy^2}+\frac{y^2}{y+x^2y}\ge\frac{\left(x+y\right)^2}{x+y+x^2y+xy^2}=\frac{2^2}{2+xy\left(x+y\right)}=\frac{4}{2+2xy}\)
Áp dụng BĐT \(\frac{\left(x+y\right)^2}{2}\ge2xy\)( tự c/m)
Dấu " = " xảy ra <=> x=y
Áp dụng: \(\frac{x}{1+y^2}+\frac{y}{1+x^2}\ge\frac{4}{2+2xy}\ge\frac{4}{2+\frac{\left(x+y\right)^2}{2}}=\frac{4}{2+2}=1\)
Dấu " = " xảy ra <=> x=y=1
Một lời giải rất quen thuộc đó là dùng cô si ngược dấu:
\(x.\frac{1}{1+y^2}=x\left(1-\frac{y^2}{1+y^2}\right)\ge x\left(1-\frac{y^2}{2y}\right)=x-\frac{xy}{2}\)
Tương tự,ta cũng có: \(\frac{y}{1+x^2}\ge y-\frac{xy}{2}\)
Cộng theo vế hai BĐT trên và áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\),ta được:
\(VT\ge\left(x+y\right)-xy\ge2-\frac{\left(x+y\right)^2}{4}=2-1=1^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi x = y = 1
cho x,y là 2 số thực dương
CMR:
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{1}{4}\)
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{1}{4}\)
Ta có:
\(VT\le\frac{x\sqrt{y}+y\sqrt{x}}{2\sqrt{xy}}-\frac{x+y}{2}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\)
Giờ ta chỉ cần chứng minh
\(\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\le\frac{1}{4}\)
\(\Leftrightarrow2x+2y-2\sqrt{x}-2\sqrt{y}+1\ge0\)
\(\Leftrightarrow\left(2x-2\sqrt{x}+\frac{1}{2}\right)+\left(2y-2\sqrt{y}+\frac{1}{2}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{2x}-\frac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2y}-\frac{1}{\sqrt{2}}\right)^2\ge0\)(đúng)
Dấu = xảy ra khi \(x=y=\frac{1}{4}\)