Chứng minh
\(\sqrt{x^2+x+x}+\sqrt{x^2-x+1}\le2-\frac{x^2}{4}\)
Chứng minh:
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}\le2\)
ĐKXĐ \(x\ge1\)
Ta có \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)
Mình gợi ý đến đây thôi. Bạn kiểm tra lại đề bài nhé :)
Cho x dương chứng minh \(2\le\sqrt{x}+\sqrt{4-x}\le2\sqrt{2}\)
\(2\le\sqrt{x}+\sqrt{4-x}\le2\sqrt{2}\) (1) (ĐK: \(\left\{{}\begin{matrix}x\ge0\\4-x\ge0\end{matrix}\right.\)\(\Leftrightarrow0\le x\le4\))
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}2\le\sqrt{x}+\sqrt{4-x}\\\sqrt{x}+\sqrt{4-x}\le2\sqrt{2}\end{matrix}\right.\) (\(0\le x\le4\))
\(\Leftrightarrow\left\{{}\begin{matrix}4\le4+2\sqrt{x\left(4-x\right)}\\4+2\sqrt{x\left(4-x\right)}\le8\end{matrix}\right.\) (\(0\le x\le4\))
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x\left(4-x\right)}\ge0\\\sqrt{x\left(4-x\right)}\le2\end{matrix}\right.\)(\(0\le x\le4\))
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4-x\right)\le4\\0\le x\le4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\0\le x\le4\end{matrix}\right.\) (đpcm)
Rút gọn biểu thức
\(\frac{\left(\sqrt{x-4\sqrt{x-4}}+\sqrt{x+4\sqrt{x-4}}\right)\left(\sqrt{x-1}-1\right)}{\sqrt{x-2\sqrt{x-1}}}\)
b,\(\sqrt{x-2\sqrt{x-1}+\sqrt{x+2\sqrt{x-1}}}1\le x\le2\)
c, \(\sqrt{x+6\sqrt{x-9}}+\sqrt{x-6\sqrt{x-9}}x>18\)
d, \(\frac{1}{2\left(1+\sqrt{x+2}\right)}+\frac{1}{2\left(1-2\sqrt{x+2}\right)}\)
e,\(\frac{1}{\sqrt{x+2\sqrt{x-1}}}-\frac{1}{\sqrt{x-2\sqrt{x-1}}}\)
cho x,y,z>0 chứng minh rằng
\(\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)
\(A=\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)
\(\Leftrightarrow\sqrt{\dfrac{1}{1+\dfrac{y}{4x}+\dfrac{y^2}{x^2}}}+\sqrt{\dfrac{1}{1+\dfrac{z}{4y}+\dfrac{z^2}{y^2}}}+\sqrt{\dfrac{1}{1+\dfrac{x}{4z}+\dfrac{x^2}{z^2}}}\le2\)
Đặt \(\left\{{}\begin{matrix}\dfrac{y}{x}=a\\\dfrac{z}{y}=b\\\dfrac{x}{z}=c\end{matrix}\right.\) thì bài toán thành
Chứng minh: \(A=\dfrac{1}{\sqrt{4a^2+a+4}}+\dfrac{1}{\sqrt{4b^2+b+4}}+\dfrac{1}{\sqrt{4c^2+c+4}}\le1\) với \(abc=1\)
Thử giải bài toán mới này xem sao bác.
*C/m bài toán mới của HUngnguyen
Ta có BĐT phụ \(\dfrac{1}{\sqrt{4a^2+a+4}}\le\dfrac{a+1}{2\left(a^2+a+1\right)}\)
\(\Leftrightarrow\left(a+1\right)^2\left(4a^2+a+4\right)\ge4\left(a^2+a+1\right)^2\)
\(\Leftrightarrow a\left(a-1\right)^2\ge0\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{\sqrt{4b^2+b+4}}\le\dfrac{b+1}{2\left(b^2+b+1\right)};\dfrac{1}{\sqrt{4c^2+c+4}}\le\dfrac{c+1}{2\left(c^2+c+1\right)}\)
CỘng theo vế 3 BĐT trên ta có;
\(VT\le1=VP\) * Chỗ này tự giải chi tiết ra nhé, giờ bận rồi*
Bài này công kềnh vậy thôi thực ra nhìn cái là ra nó là hệ quả của BĐT Vasc của cụ Vasile Bat dang thuc Vasc.pdf
chứng minh rằng
a, \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}=1\)
b, \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}=\frac{2}{\sqrt[]{x}}\)
a, \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{2+\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)
\(=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)
\(=\frac{6+\sqrt{3}-3+6-\sqrt{3}-3}{9-3}=\frac{6}{6}=1\)
b, \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\frac{2}{\sqrt{x}}\)
Chứng minh:
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}\le2\)
Giúp mình với nha mấy bạn mình cần gấp lắm huhu!!
ĐKXĐ : \(x\ge1\)
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|\)
Xét các trường hợp :
1. Nếu \(1\le x\le2\)thì \(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\left(1-\sqrt{x-1}\right)=2\sqrt{x-1}\le2\)
2. Nếu \(x>2\) thì
\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
Gộp hai trường hợp có đpcm.
Liệu còn cách nào khác nữa ko bạn???
1) Rút gọn:
\(A=\frac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}}.\sqrt{2x-1}.\)
2) Chứng minh:
\(\sqrt{\sqrt{x}+\sqrt{\frac{x^2-4}{x}}}+\sqrt{\sqrt{x}-\sqrt{\frac{x^2-4}{x}}}=\sqrt{\frac{2x+4}{\sqrt{x}}}\)
GIÚP MK GIẢI 2 BÀI NÀY NHA M.N! THANKS NHÌU! _ mk đang cần gấp lắm!!! T^T
AI BIẾT LÀM HỘ NHA ! TỚ TICK CHO
1, A= \(\frac{x+2}{x\sqrt{x-1}}+\frac{\sqrt{x+1}}{x+\sqrt{x+1}}-\frac{1}{\sqrt{x-1}}\)
2, chứng minh biểu thức sau có giá trị ko phụ thuộc vào x
A= \(\sqrt{x}+\frac{3\sqrt{2-\sqrt{3}}.6\sqrt{7+4\sqrt{3}}-x}{4\sqrt{9-4\sqrt{5}}.\sqrt{2}+\sqrt{5}+\sqrt{x}}\)
Cho hai biểu thức $A=\frac{4 \sqrt{x}}{\sqrt{x}-1} ; B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}$ với $x \geq 0 ; x \neq 1$
1. Tính giá trị biểu thức $A$ khi $x=49$;
2. Chứng minh $B=\frac{\sqrt{x}+1}{\sqrt{x}-1}$;
3. Cho $P=A: B$. Tìm giá trị của $x$ để $P(\sqrt{x}+1)=x+4+\sqrt{x-4}$.
Em gửi ảnh trên ạ !!!!!
a, Ta có \(x=49\Rightarrow\sqrt{x}=7\)
Thay vào biểu thức A ta được :
\(A=\frac{7.4}{7-1}=\frac{28}{6}=\frac{14}{3}\)
b, Với \(x\ge0;x\ne1\)
\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)( đpcm )