Những câu hỏi liên quan
H24
Xem chi tiết
TT
31 tháng 12 2021 lúc 9:04

\(A=\dfrac{3x}{x-1}+\dfrac{2}{x+1}+\dfrac{3-3x-2x^2}{x^2-1}.\) \(\left(ĐKXĐ:x\ne1;x\ne-1\right).\)

\(A=\dfrac{3x\left(x+1\right)+2\left(x-1\right)+3-3x-2x^2}{\left(x-1\right)\left(x+1\right)}.\)

\(A=\dfrac{3x^2+3x+2x-2+3-3x-2x^2}{\left(x-1\right)\left(x+1\right)}.\)

\(A=\dfrac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}.\)

 

Bình luận (0)
H24
Xem chi tiết
H24
13 tháng 8 2023 lúc 21:21

a) (3x - 2)2 - (1 + 5x)2

= (3x - 2 - 1 - 5x)(3x - 2 + 1 + 5x)

= (-2x - 3)(8x - 1)

b) (3x + 4)(3x - 4) - (5 - x)2

= (3x)2 - 42 - (25 - 10x + x2)

= 9x2 - 16 - 25 + 10x - x2

= 8x2  + 10x - 41

c) \(\left(\dfrac{1}{2}x+4\right)^2-\left(\dfrac{1}{2}x+3\right)\left(\dfrac{1}{2}x-3\right)\)

\(=\left(\dfrac{1}{2}x\right)^2+2.\dfrac{1}{2}x.4+4^2-\left[\left(\dfrac{1}{2}x\right)^2-3^2\right]\)

\(=\dfrac{1}{4}x^2+4x+16-\dfrac{1}{4}x^2+9\)

\(=4x+25\)

Bình luận (0)
NT
13 tháng 8 2023 lúc 21:17

a: =9x^2-12x+4-25x^2-10x-1

=-16x^2-22x+3

b: =9x^2-16-x^2+10x-25

=8x^2+10x-41

c: \(=\dfrac{1}{4}x^2+4x+16-\dfrac{1}{4}x^2+9=4x+25\)

Bình luận (0)
TP
Xem chi tiết
LH
Xem chi tiết
MN
3 tháng 3 2020 lúc 12:22

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne1\end{cases}}\)

\(A=\frac{2x+1}{x^2-3x+2}+\frac{x+1}{1-x}-\frac{x^2+5}{x^2-3x+2}+\frac{x^2+x}{x-1}\)

\(\Leftrightarrow A=\frac{2x+1}{\left(x-1\right)\left(x-2\right)}-\frac{x+1}{x-1}-\frac{x^2+5}{\left(x-2\right)\left(x-1\right)}+\frac{x^2+x}{x-1}\)

\(\Leftrightarrow A=\frac{2x+1-\left(x+1\right)\left(x-2\right)-x^2-5+\left(x^2+x\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{2x+1-x^2+x+2-x^2-5+x^3-x^2-2x}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}\)

b) Khi \(x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=.0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)

\(\Leftrightarrow A=\frac{\left(-1\right)^3-3\left(-1\right)^2-1-2}{\left(-1-2\right)\left(-1-1\right)}=\frac{\left(-1\right)-3-1-2}{\left(-3\right)\left(-2\right)}=\frac{7}{6}\)

c) Để A = 0

\(\Leftrightarrow\frac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x^3-3x^2+x-2=0\)2.89328919

Phần này mik k biết phân tích như thế nào, tính ra :

\(\Leftrightarrow x\approx2,89328919\)

Nhưng nếu đề bắt tìm nghiệm nguyên của x thì \(S=\varnothing\)nhé !

d) Để \(A\inℤ\)

\(\Leftrightarrow x^3-3x^2+x-2⋮\left(x-2\right)\left(x-1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^3-3x^2+x-2⋮x-2\\x^3-3x+x-2⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2-x-1\right)\left(x-2\right)-4⋮x-2\\\left(x^2-2x-1\right)\left(x-1\right)-3⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4⋮x-2\\3⋮x-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{1;3;0;4;-2;6\right\}\\x\in\left\{0;2;-2;4\right\}\end{cases}}\)

\(\Leftrightarrow x\in\left\{0;-2;4\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{0;-2;4\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NM
2 tháng 10 2021 lúc 21:09

\(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\left(x>0;x\ne1;x\ne\dfrac{1}{4}\right)\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{x-1+3x}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{\left(2\sqrt{x}+1\right)\left(2x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)

Bình luận (0)
NT
2 tháng 10 2021 lúc 21:10

a: Ta có: \(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\)

\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{4x-1}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\left(2x-2\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)

Bình luận (0)
HK
Xem chi tiết
H24
27 tháng 7 2023 lúc 16:53

\(P=\left(\dfrac{3x^2+3x-3}{x^2+x-2}+\dfrac{1}{x-1}+\dfrac{1}{x+2}-2\right):\dfrac{1}{x^2-1}\left(dk:x\ne-2,x\ne\pm1\right)\)

\(=\left(\dfrac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}+\dfrac{1}{x-1}+\dfrac{1}{x+2}-2\right).\left(x^2-1\right)\)

\(=\left(\dfrac{3x^2+3x-3+x+2+x-1-2\left(x^2+x-2\right)}{\left(x-1\right)\left(x+2\right)}\right).\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{3x^2+5x-2-2x^2-2x+4}{x+2}.\left(x+1\right)\\ =\dfrac{x^2+3x+2}{x+2}.\left(x+1\right)\)

\(=\dfrac{x^2+x+2x+2}{x+2}.\left(x+1\right)\\ =\dfrac{x\left(x+1\right)+2\left(x+1\right)}{x+2}.\left(x+1\right)\\ =\dfrac{\left(x+1\right)^2\left(x+2\right)}{x+2}\\ =x^2+2x+1\)

Ta có :

 \(x^2-x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\ \Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\)

Với \(x=3\) thì \(P=x^2+2x+1=\left(x+1\right)^2=\left(3+1\right)^2=16\)

Vậy ...

Bình luận (0)
H24
Xem chi tiết
UT
20 tháng 4 2022 lúc 22:18

Bị lỗi r

Bình luận (3)
H24
20 tháng 4 2022 lúc 22:22

https://hoc24.vn/cau-hoi/rut-gon.5902455849444

Bình luận (0)
HT
Xem chi tiết
NM
28 tháng 8 2021 lúc 15:28

\(M=\dfrac{x^2}{x^2-3x}\left(x\ne0;x\ne3\right)\\ M=\dfrac{x^2}{x\left(x-3\right)}\\ M=\dfrac{x}{x-3}\)

\(N=\dfrac{x}{x+1}+\dfrac{3x+1}{x^2-1}\left(x\ne\pm1\right)\\ N=\dfrac{x-1+3x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x}{\left(x+1\right)\left(x-1\right)}\)

Bình luận (1)
TP
28 tháng 8 2021 lúc 16:15

a) M=\(\dfrac{x^2}{x^2-3x}\)=\(\dfrac{x.x}{x\left(x-3\right)}\)=\(\dfrac{x}{x-3}\)

b)\(\dfrac{x}{x+1}+\dfrac{3x+1}{x^2-1}\)=\(\dfrac{2x^2+4x+1}{x^3+x^2}\)

Bình luận (0)
NT
28 tháng 8 2021 lúc 23:41

\(M=\dfrac{x^2}{x^2-3x}=\dfrac{x}{x-3}\)

\(N=\dfrac{x}{x+1}+\dfrac{3x+1}{x^2-1}=\dfrac{x^2-x+3x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)

Bình luận (0)
TN
Xem chi tiết
NT
15 tháng 12 2023 lúc 11:44

Bài 1:

a: \(\left|x-\dfrac{1}{2}\right|+\dfrac{1}{2}=x\)

=>\(\left|x-\dfrac{1}{2}\right|=x-\dfrac{1}{2}\)

=>\(x-\dfrac{1}{2}>=0\)

=>\(x>=\dfrac{1}{2}\)

b: \(\left|1-3x\right|+1=3x\)

=>\(\left|1-3x\right|=3x-1\)

=>\(1-3x< =0\)

=>3x-1>=0

=>3x>=1

=>\(x>=\dfrac{1}{3}\)

Bài 2:

a: \(C=\left|5-x\right|+x=\left|x-5\right|+x\)

TH1: x>=5

\(C=x-5+x=2x-5\)

TH2: x<5

C=5-x+x=5

b: D=|2x-1|-x

TH1: x>=1/2

\(D=2x-1-x=x-1\)

TH2: \(x< \dfrac{1}{2}\)

D=1-2x-x=1-3x

Bình luận (0)