Những câu hỏi liên quan
VN
Xem chi tiết
NT
5 tháng 4 2021 lúc 21:56

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

Bình luận (0)
H24
5 tháng 4 2021 lúc 21:58

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

Bình luận (1)
NT
5 tháng 4 2021 lúc 22:00

2) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{1}=-2m\\x_1\cdot x_2=\dfrac{2m-1}{1}=2m-1\end{matrix}\right.\)

a) Ta có: \(x_1+x_2=-1\)

\(\Leftrightarrow-2m=-1\)

hay \(m=\dfrac{1}{2}\)

b) Ta có: \(x_1^2+x_2^2=13\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

\(\Leftrightarrow\left(-2m\right)^2-2\cdot\left(2m-1\right)=13\)

\(\Leftrightarrow4m^2-4m+2-13=0\)

\(\Leftrightarrow4m^2-4m+1-12=0\)

\(\Leftrightarrow\left(2m-1\right)^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}2m-1=2\sqrt{3}\\2m-1=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\sqrt{3}+1\\2m=-2\sqrt{3}+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2\sqrt{3}+1}{2}\\m=\dfrac{-2\sqrt{3}+1}{2}\end{matrix}\right.\)

Bình luận (1)
LT
Xem chi tiết
H24
13 tháng 6 2021 lúc 17:06

Xét phương trình: \(x^2-2\left(m+3\right)x+2m+5=0\Rightarrow\Delta'=\left(m+3\right)^2-2m-5=\left(m+2\right)^2\ge0\) .

Do đó phương trình luôn có 2 nghiệm và để phương trình có 2 nghiệm phân biệt thì \(m\ne-2.\)

Theo định lý viet thì ta có: \(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=2m+5\end{cases}}\). Do đó: \(m>-\frac{5}{2}\)\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\Rightarrow\frac{1}{x_1}+\frac{1}{x_2}+2\sqrt{\frac{1}{x_1x_2}}=\frac{x_1+x_2}{x_1x_2}+2\sqrt{\frac{1}{2m+5}}=\frac{16}{9}\)

\(\Leftrightarrow\frac{2m+6}{2m+5}+2\sqrt{\frac{1}{2m+5}}=\frac{1}{2m+5}+2\sqrt{\frac{1}{2m+5}}+1=\left(\sqrt{\frac{1}{2m+5}}+1\right)^2=\frac{16}{9}\)

\(\Rightarrow\sqrt{\frac{1}{2m+5}}=\frac{1}{3}\Leftrightarrow\frac{1}{2m+5}=\frac{1}{9}\Leftrightarrow2m+5=9\Leftrightarrow m=2.\)

Vậy \(m=2.\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
QT
Xem chi tiết
NT
7 tháng 8 2021 lúc 23:03

a) Thay m=-2 vào phương trình, ta được:

\(x^2+4x+3=0\)

a=1; b=4; c=3

Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)

Bình luận (0)
QH
Xem chi tiết
NT
23 tháng 3 2023 lúc 0:19

Δ=(2m)^2-4(-2m-1)

=4m^2+8m+4=(2m+2)^2

Để pt có hai nghiệm pb thì 2m+2<>0

=>m<>-1

x1+x2=-2m; x1x2=-2m-1

x1^2+x2^2=(x1+x2)^2-2x1x2

=(-2m)^2-2(-2m-1)

=4m^2+4m+2

\(\dfrac{6}{x1}=\dfrac{x1+1}{x2}\)

=>x1^2+x1-6x2=0

=>4m^2+4m+2-x2^2+-2m-x2-6x2=0

=>-x2^2-7x2+4m^2+2m+2=0

=>\(x_2^2+7x_2-4m^2-2m-2=0\)(1)

\(\text{Δ}=7^2-4\left(-4m^2-2m-2\right)\)

\(=49+16m^2+8m+8\)

=16m^2+8m+57

=16m^2+8m+1+56=(4m+1)^2+56>=56>0

=>(1)luôn có nghiệm

Bình luận (0)
PT
Xem chi tiết
PD
Xem chi tiết
HH
4 tháng 8 2017 lúc 9:22

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

Bình luận (0)
LP
Xem chi tiết
TH
Xem chi tiết
NT
19 tháng 2 2022 lúc 22:41

a, \(\Delta'=m^2-\left(m^2-4\right)=4>0\)

Vậy pt luôn có 2 nghiệm pb x1;x2 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-4\end{cases}}\)

Ta có : \(2x_1-3x_2=-1\left(3\right)\)Từ (1) ;(3) ta có hệ 

\(\hept{\begin{cases}2x_1+2x_2=4m\\2x_1-3x_2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}5x_2=4m+1\\x_1=2m-x_2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{4m+1}{5}\\x_1=\frac{10-4m-1}{5}=\frac{-4m+9}{5}\end{cases}}\)

Thay vào (2) ta được \(\frac{\left(4m+1\right)\left(-4m+9\right)}{25}=m^2-4\)

\(\Rightarrow-16m^2+36m-4m+9=25\left(m^2-4\right)\)

\(\Leftrightarrow41m^2-32m-109=0\)

bạn tự tính = delta' nhé, có gì sai bảo mình do số khá to và phức tạp á 

Bình luận (0)
 Khách vãng lai đã xóa
NT
19 tháng 2 2022 lúc 22:43

b, Ta có \(\left|x_1\right|=\left|x_2\right|\)suy ra 

\(\left|\frac{4m+1}{5}\right|=\left|\frac{9-4m}{5}\right|\Rightarrow\left|4m+1\right|=\left|9-4m\right|\)

TH1 : \(4m+1=9-4m\Leftrightarrow8m=8\Leftrightarrow m=1\)

TH2 : \(4m+1=4m-9\left(voli\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
ZN
20 tháng 2 2022 lúc 20:39

Ta tính được \(\delta\) \(=\left(-2m\right)^2-4\left(m^2-4\right)=16>0\)

= > PT có 2 nghiệm phân biệt với mọi m 

\(x_1=\frac{2m+4}{2}=m+2\)

\(x_2=\frac{2m-4}{2}=m-2\)

a, \(2.x_1-3.x_2=-1\)

\(\Leftrightarrow2\left(m+2\right)-3.\left(m-2\right)=-1\)

\(\Leftrightarrow2m-3m+4+6=1\)

\(\Leftrightarrow m=9\)

b, \(\left|x_1\right|=\left|x_2\right|\)

\(\left|m+2\right|=\left|m-2\right|\)

\(\Leftrightarrow\hept{\begin{cases}m+2=m-2\\m+2=2-m\end{cases}}\)

\(\Leftrightarrow m=0\)

Bình luận (0)
 Khách vãng lai đã xóa
PU
Xem chi tiết
NT
9 tháng 4 2022 lúc 13:21

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Bình luận (0)