Những câu hỏi liên quan
KH
Xem chi tiết
LA
7 tháng 7 2018 lúc 17:07

BÀI 1: 

\(a,x^2-2x-1\)

\(=x^2-2x+1-2\)

\(=\left(x-1\right)^2-2\)

Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)

Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy: GTNN của bt là -2 tại x=1

\(b,4x^2+4x-5\)

\(=4x^2+4x+1-6\)

\(=\left(2x+1\right)^2-6\)

Vì: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)

Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

VậyGTNN của bt là -6 tại x=-1/2

BÀI 2:

\(a,2x-x^2-4\)

\(=-x^2+2x-4\)

\(=-x^2+2x-1-3\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Vì: \(-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy GTLN của bt là -3 tại x=1

b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn

Bình luận (0)
KS
7 tháng 7 2018 lúc 17:06

1)

a) Đặt \(A=x^2-2x+1\) 

\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)

\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy \(A_{min}=2\Leftrightarrow x=1\)

Câu b tương tự

2)

a) Đặt \(B=2x-x^2-4\)

 \(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy\(B_{max}=-3\Leftrightarrow x=1\)

b) Đặt \(C=-x^2-4\)

Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)

\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)

Vậy \(C_{max}=-4\Leftrightarrow x=0\)

Bình luận (0)
LA
7 tháng 7 2018 lúc 17:09

thôi bn tham khảo bài của bn kudo shinichi đi, bn ấy lm đúng rồi

Bình luận (0)
LT
Xem chi tiết
AN
22 tháng 2 2019 lúc 8:06

\(A=8\left(x-2\right)^4+8\ge8\)

Bình luận (0)
LT
23 tháng 2 2019 lúc 14:27

chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm 

vì vậy mình sẽ ko cho bạn

Bình luận (0)
AN
23 tháng 2 2019 lúc 16:24

Uk hiểu rồi từ này về sau sẽ tránh câu hỏi của bạn. Yên tâm.

Bình luận (0)
BH
Xem chi tiết
H24
Xem chi tiết
BT
1 tháng 11 2019 lúc 17:49

\(a,\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)

\(=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)\)

\(=\frac{x^4-1-x^4+x^2-1}{x^2+1}\)

\(=\frac{x^2+2}{x^2+1}\)

b, biển đổi \(M=1-\frac{3}{x^2+1}\)

M bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất

\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\)

\(\Rightarrow x=0\Rightarrow\)M bé nhất =-2

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
TP
28 tháng 11 2018 lúc 12:07

\(A=\left(x+2\right)\left(x-1\right)\left(x+5\right)\left(x+8\right)\)

\(A=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x-1\right)\left(x+8\right)\right]\)

\(A=\left(x^2+7x+10\right)\left(x^2+7x-8\right)\)

Đặt \(t=x^2+7x+1\)ta có :

\(A=\left(t+9\right)\left(t-9\right)\)

\(A=t^2-9^2=t^2-81\ge-81\)

Dấu "=" xảy ra \(\Leftrightarrow x^2+7x+1=0\)

Bình luận (0)
ND
Xem chi tiết
VL
Xem chi tiết
KH
Xem chi tiết
HT
Xem chi tiết
H24
9 tháng 6 2021 lúc 8:36

`|x-1|+2020|x-2|+|x-3|`

`=|x-1|+|3-x|+2020|x-2|`

Áp dụng BĐT `|A|+|B|>=|A+B|`

`=>|x-1|+|3-x|>=|x-1+3-x|=2`

Mà `|x-2|>=0=>2020|x-2|>=0`

`=>|x-1|+2020|x-2|+|x-3|>=2`

Dấu "=" xảy ra khi $\begin{cases}(x-1)(3-x) \ge 0\\x-2=0\\\end{cases}$

`<=>` $\begin{cases}(x-1)(x-3) \le 0\\x=2\\\end{cases}$

`<=>` $\begin{cases}1 \le x \le 3\\x=2\\\end{cases}$

`<=>x=2`

Bình luận (0)