Những câu hỏi liên quan
NL
Xem chi tiết
HT
12 tháng 5 2015 lúc 22:30

CÔSI ta có VT<=1/xy+1/zy+1/zx. 

sau đó vẫn áp dụng bất đẳng thức cosi tùng đôi một vế phải đã cho ta sẽ đc điều phải chứng minh

Bình luận (0)
LC
Xem chi tiết
DM
Xem chi tiết
NT
Xem chi tiết
H24
31 tháng 12 2016 lúc 14:31

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

Bình luận (0)
NH
Xem chi tiết
GD
7 tháng 10 2019 lúc 15:26

Ta có :

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\) ( Sử dụng phương pháp véctơ )

Do đó :

\(VT^2=\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)\(=81\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)\(-80\left(x+y+z\right)^2\ge18\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-80\left(x+y+z\right)^2\)\(\ge162-80=82\)

\(\Rightarrow VT\ge\sqrt{82}\)

Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)

Bình luận (0)
LH
7 tháng 10 2019 lúc 18:36

Cách khác

Áp dụng bđt bunhiacopski có:

\(\left(1.x+9.\frac{1}{x}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{x^2}\right)\)

=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{\left(x+\frac{9}{x}\right)}{\sqrt{82}}\)

CM tương tự: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{\left(y+\frac{9}{y}\right)}{\sqrt{82}}\)

\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{\left(z+\frac{9}{z}\right)}{\sqrt{82}}\)

Cộng vế với vế =>A= \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\frac{\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)}{\sqrt{82}}\)

Áp dụng svac-xơ vào VP có A \(\ge\frac{\left(x+y+z+\frac{81}{x+y+z}\right)}{\sqrt{82}}=\frac{\left(x+y+z+\frac{1}{x+y+z}+\frac{80}{x+y+z}\right)}{\sqrt{82}}\ge\frac{\left(2+80\right)}{\sqrt{82}}\)

<=> \(A\ge\sqrt{82}\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)

Bình luận (0)
H24
Xem chi tiết
PT
9 tháng 6 2018 lúc 16:57

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Bình luận (0)
NH
Xem chi tiết
PL
Xem chi tiết
KS
10 tháng 2 2020 lúc 9:41

Theo AM-GM: \(x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\)

Tương tự: \(\frac{2\sqrt{y}}{y^3+z^2}\le\frac{1}{yz}\)

\(\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{zx}\)

Cộng vế với vế => \(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

Theo AM-GM; \(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}}{2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Dấu " = " xảy ra <=> x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
KS
10 tháng 2 2020 lúc 9:45

Áp dụng bất đẳng thức Cacuhy - Schwarz 

\(\Rightarrow\hept{\begin{cases}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\\\frac{2\sqrt{y}}{y^3+z^2}\le\frac{2\sqrt{y}}{2yz\sqrt{y}}=\frac{1}{yz}\\\frac{2\sqrt{z}}{z^3+x^2}\le\frac{2\sqrt{z}}{2xz\sqrt{z}}=\frac{1}{xz}\end{cases}}\)

\(\Rightarrow VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(1\right)\)

Áp dụng bất đẳng thức Cacuchy Schwarz 

\(\Rightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\\\frac{1}{y^2}+\frac{1}{z^2}\ge2\sqrt{\frac{1}{y^2z^2}}=\frac{2}{yz}\\\frac{1}{z^2}+\frac{1}{x^2}\ge2\sqrt{\frac{1}{z^2x^2}}=\frac{2}{xz}\end{cases}}\)

\(\Rightarrow2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow VT\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
TL
26 tháng 7 2020 lúc 21:33

chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)

ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)

\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)

\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)

\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)

chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)

áp dụng bất đẳng thức Cauchy ta có: 

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)

ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)

kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)

Bình luận (0)
 Khách vãng lai đã xóa