Những câu hỏi liên quan
NM
Xem chi tiết
NT
2 tháng 3 2022 lúc 15:03

\(đk:6n+4\ne0\Leftrightarrow n\ne\dfrac{2}{3}\)

Bình luận (0)
NA
Xem chi tiết
NT
22 tháng 2 2022 lúc 14:27

\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

3n-11-12-23-34-46-612-12
nloại01loạiloạiloạiloại-1loạiloạiloạiloại

 

c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

n-31-13-39-9
n426012-6

 

Bình luận (0)
TL
27 tháng 2 2023 lúc 21:18

Có đúng không

 

Bình luận (0)
NM
Xem chi tiết
NL
2 tháng 3 2022 lúc 15:17

Gọi \(d=ƯC\left(2n+3;6n+4\right)\)

\(\Rightarrow3\left(2n+3\right)-\left(6n+4\right)⋮d\)

\(\Rightarrow5⋮d\)

\(\Rightarrow\left[{}\begin{matrix}d=1\\d=5\end{matrix}\right.\)

- Với d=1 \(\Rightarrow\) 2n+3 và 6n+4 nguyên tố cùng nhau nên phân số A không rút gọn được (loại)

- Với \(d=5\Rightarrow2n+3⋮5\)

\(\Rightarrow2n+3=5k\)

\(\Rightarrow2\left(n-1\right)=5\left(k-1\right)\)

Do 2 và 5 nguyên tố cùng nhau

\(\Rightarrow n-1⋮5\)

\(\Rightarrow n-1=5m\)

\(\Rightarrow n=5m+1\)

Vậy với mọi số tự nhiên n có dạng \(n=5m+1\) (\(m\in N\)) thì A rút gọn được

Bình luận (15)
LH
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
NL
13 tháng 3 2023 lúc 22:06

gọi ƯC(2n+3;6n+4)=n

để A rút gọn được thì ƯC(2n+3;6n+4) = n( khác 1)

=>2n+3⋮n=>3(2n+3)⋮n=>6n+9⋮n

   6n+4 ⋮n

=>6n+9-6n+4⋮n(vì cả 2 đều ⋮n)

=>5 ⋮n=>nϵƯ(5)={1;5;}

=>vì n phải khác 1 thì A mới rút gọn được

=>n = 5 thì A rút gọn được

Bình luận (0)
AB
Xem chi tiết
H24
28 tháng 1 2022 lúc 9:53

Tham khảo

undefinednhớ tick nha bbi

Bình luận (0)
VH
28 tháng 1 2022 lúc 9:56

undefinedtk

 

Bình luận (0)
KJ
28 tháng 1 2022 lúc 10:07

Gọi ƯC(21n+3; 6n+4) = d; \(\dfrac{21n+3}{6n+4}\) = A ⇒ 21n+3 ⋮ d; 6n+4 ⋮ d

⇒ (6n+4) - (21n+3) ⋮ d

⇒ 7(6n+4) - 2(21n+3) ⋮ d

⇒ 42n + 28 - 42n - 6 ⋮ d

⇒ 22 ⋮ cho số nguyên tố d

d ∈ {11; 2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d = 2 hoặc d = 11.

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2.(21n+3) chia hết cho 2 nếu n là số lẻ.

Nếu A có thể rút gọn cho 11 thì 21n+3 ⋮ 11 ⇒ 22n - n + 3 ⋮ 11 ⇒ n - 3 ⋮ 11. Đảo lại với n = 11k+3 thì 21n + 3 và 6n+4 chia hết cho 11.

Vậy với n là số lẻ hoặc n là số chẵn mà n = 11k+3 thì phân số đó rút gọn được.

 

 

Bình luận (0)
QD
Xem chi tiết
VC
26 tháng 7 2017 lúc 16:07

đặt ước chung lớn nhất ấy

Bình luận (0)
00
4 tháng 8 2017 lúc 21:35

Giải . Giả sử , tử và mẫu của phân số cùng chia hết cho số nguyên tố d => 7 ( 6n + 4 ) - 2 ( 21n + 3 ) chia hễt cho d => 22 chia hết cho số nguyên tố d => d € { 2 ; 11 } .

Như vậy nếu phân số A rút gọn được cho số nguyên tố d thì d = 2 hoặc d = 11 .

Trường hợp phân số rút gọn cho 2 : Ta luôn luôn có 6n + 4 chia hết cho 2 , còn 21n + 3 chia hết cho 2 nếu n lẻ .

Trường hợp phân số rút gọn cho 11 : Ta có 21n + 3 chia hết cho 11 => 22n - n + 3 chia hễt cho 11 . Đảo lại với n = 11k + 3 ( k € N ) thì 21n + 3 và 6n + 4 chia hết cho 11 .

Vậy với n lẻ hoặc n chẵn mà n = 11k + 3 thì phân số A rút gọn được .

Chú ý rằng n chẵn khi và chỉ khi k lẻ ( k = 2m + 1 ) nên kết quả trên có thể viết là n = 2m + 1 hoặc n = 2 ( 11m + 7 ) với m € N .

Bình luận (0)
PA
11 tháng 5 2020 lúc 18:47

Gọi dd là ước nguyên tố của 21n+321n+3 và 6n+46n+4.

Suy ra ⎧⎨⎩21n+3⋮d6n+4⋮d⇒⎧⎨⎩2.(21n+3)⋮d7.(6n+4)⋮d{21n+3⋮d6n+4⋮d⇒{2.(21n+3)⋮d7.(6n+4)⋮d⇒⎧⎨⎩42n+6⋮d42n+28⋮d⇒{42n+6⋮d42n+28⋮d

⇒(42n+28)−(42n+6)⋮d⇒(42n+28)−(42n+6)⋮d

⇒42n+28−42n−6⋮d⇒42n+28−42n−6⋮d

⇒22⋮d⇒22⋮d

Vì dd là số nguyên tố nên d∈{2;11}d∈{2;11}.

+) Với d=2⇒⎧⎨⎩21n+3⋮26n+4⋮2⇒⎧⎨⎩3.(7n+1)⋮22.(3n+2)⋮2d=2⇒{21n+3⋮26n+4⋮2⇒{3.(7n+1)⋮22.(3n+2)⋮2

Vì 2.(3n+2)⋮22.(3n+2)⋮2 (luôn đúng) ⇒3.(7n+1)⋮2⇒3.(7n+1)⋮2.

Mà 33 không chia hết cho 22 suy ra (7n+1)⋮2(7n+1)⋮2

⇒⎧⎨⎩7n+1⋮26⋮2⇒7n+1+6⋮2⇒7n+7⋮2⇒7(n+1)⋮2⇒{7n+1⋮26⋮2⇒7n+1+6⋮2⇒7n+7⋮2⇒7(n+1)⋮2

Vì 77 không chia hết cho 2⇒n+1⋮2⇒n=2m−1(m∈N∗)2⇒n+1⋮2⇒n=2m−1(m∈N∗).

+) Với d=11⇒⎧⎨⎩21n+3⋮116n+4⋮11d=11⇒{21n+3⋮116n+4⋮11

Ta có: 21n+3⋮1121n+3⋮11 ⇒22n−n+3⋮11⇒22n−n+3⋮11⇒22n−(n−3)⋮11⇒22n−(n−3)⋮11

Mà 22n⋮1122n⋮11 nên (n−3)⋮11⇒n−3=11k⇒n=11k+3(k∈N)(n−3)⋮11⇒n−3=11k⇒n=11k+3(k∈N)

Với n=11k+3⇒6n+4=6(11k+3)+4n=11k+3⇒6n+4=6(11k+3)+4 =66k+22=11(6k+3)⋮11(tm)=66k+22=11(6k+3)⋮11(tm)

Vậy với n=2m+1n=2m+1 hoặc n=11k+3(m∈N∗,k∈N)n=11k+3(m∈N∗,k∈N) thì phân số A=21n+36n+4A=21n+36n+4 rút gọn được.

Bình luận (0)
 Khách vãng lai đã xóa
BS
Xem chi tiết
DA
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Bình luận (0)
 Khách vãng lai đã xóa