so sanh\(\sqrt{24}\)+\(\sqrt{35}\)va 11
so sanh\(\sqrt{24+\sqrt{35}và11}\)
\(\sqrt{24+\sqrt{35}}< \sqrt{25+\sqrt{36}}=\sqrt{5+6}=\sqrt{11}< 11\)
So sanh:
a, \(\sqrt{\dfrac{35}{34}}\) va \(\sqrt{\dfrac{71}{70}}\)
b, \(4\sqrt{5}-3\sqrt{2}\) va 5
Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Mysterious Person, Phạm Hoàng Giang, Phùng Khánh Linh, Dũng Nguyễn, TRẦN MINH HOÀNG, JakiNatsumi, Hoàng Phong, ...
Giup minh voi !!! Khôi Bùi,DƯƠNG PHAN KHÁNH DƯƠNG, Phùng Khánh Linh, Nhã Doanh, hattori heiji, Phạm Hoàng Giang, Dũng Nguyễn, ...
\(\sqrt{24}+\sqrt{63}+3\)va 16 .so sanh
Ta có \(16=5+8+3=\sqrt{25}+\sqrt{64}+3.\)
do : \(25>24\Rightarrow\sqrt{25}>\sqrt{24}\); \(64>63\Rightarrow\sqrt{64}>\sqrt{63}\)
=> \(\sqrt{25}+\sqrt{64}+3>\sqrt{24}+\sqrt{63}+3\)
=> \(\sqrt{24}+\sqrt{63}+3< 16\)
ta có căn64>căn63 (1)
căn25>căn24 (2)
167>3 (3)
cộng vế theo vế (1);(2);(3)
=>căn64+căn25+167=16>căn24+căn63+3
1`)So Sanh
a)\(\sqrt{24}+\sqrt{45}\) va 12
b)\(\sqrt{37}-\sqrt{15}\)va 2
giup mk voi nhe
a,Ta có:
\(\left(\sqrt{24}+\sqrt{45}\right)^2=24+45=69\)
\(12^2=144\)
Do 69<144 nên ...
b,tương tự ý a
a ) Ta co \(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12\)
vay \(\sqrt{24}+\sqrt{45}< 12\)
b)ta co \(\sqrt{37}-\sqrt{15}>\sqrt{4}-\sqrt{0}=2-0=2\)
vay \(\sqrt{37}-\sqrt{15}>2\)
So sanh:
a, \(2-2\sqrt{3}\) va \(4-\sqrt{15}\)
b, \(\sqrt{11}+2\) va \(3+\sqrt{3}\)
a) \(2-2\sqrt{3}\) và \(4-\sqrt{15}\)
Giả sử : \(2-2\sqrt{3}\ge4-\sqrt{15}\)
⇔ \(\sqrt{15}-2\sqrt{3}\ge2\)
⇔ \(\left(\sqrt{15}-2\sqrt{3}\right)^2\ge2^2\)
⇔ 15 - \(12\sqrt{5}+12\) ≥ 4
⇔ 27 -4 ≥ \(12\sqrt{5}\)
⇔ 23 ≥ \(12\sqrt{5}\)
⇔ \(23^2\) ≥ \(\left(12\sqrt{5}\right)^2\)
⇔ 529 ≥ 720 (sai)
Vậy 2 - \(2\sqrt{3}< 4-\sqrt{15}\)
b) \(\sqrt{11}+2\) và \(3+\sqrt{3}\)
Giả sử : \(\sqrt{11}+2\le3+\sqrt{3}\)
⇔ \(\sqrt{11}-\sqrt{3}\le1\)
⇔ \(\left(\sqrt{11}-\sqrt{3}\right)^2\le1\)
⇔ 14 - \(2\sqrt{33}\) ≤ 1
⇔ 13 ≤ \(2\sqrt{33}\)
⇔ \(13^2\le\left(2\sqrt{33}\right)^2\)
⇔ 169 ≤ 132 (sai)
Vậy \(\sqrt{11}+2\ge3+\sqrt{3}\)
Nguyễn Thanh Hằng, Dương Nguyễn, Ngô Thành Chung, Khôi Bùi , Trần Nguyễn Bảo Quyên, Tạ Thị Diễm Quỳnh, Nguyễn Quang Minh, Khánh Như Trương Ngọc, Nguyễn Quang Minh, Mysterious Person, Phùng Khánh Linh, JakiNatsumi, DƯƠNG PHAN KHÁNH DƯƠNG, Hoàng Phong, Ribi Nkok Ngok, ...
so sanh : A=\(\sqrt{11+\sqrt{96}}\) va B=\(\frac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}\)
\(A=\sqrt{11+\sqrt{96}}>B=\frac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}\)
Đã làm: https://olm.vn/hoi-dap/detail/223607632837.html
so sanh x va y biet
a) x=\(2\sqrt{7}\)va y=\(3\sqrt{3}\)
b) x=\(6\sqrt{2}\)va y=\(5\sqrt{3}\)
c) x=\(\sqrt{31}-\sqrt{33}\) va y=\(6-\sqrt{11}\)
So sanh : \(\sqrt{2016}-\sqrt{2015}va\sqrt{\sqrt{2015}-}\sqrt{2014}\)
so sanh ko dung may tinh
1 )\(\sqrt{3}\) +\(\sqrt{7}\) va 2+ \(\sqrt{6}\)
2) \(\sqrt{7}\) - \(\sqrt{5}\) va \(\sqrt{6}-2\)
3) \(\sqrt{11}-\sqrt{7}vs\sqrt{7}-\sqrt{3}\)
1: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}\)
\(\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)
mà 2 căn 21<4 căn 6
nên căn 3+căn 7<2+căn 6
2: \(\sqrt{7}-\sqrt{5}=\dfrac{2}{\sqrt{7}+\sqrt{5}}\)
\(\sqrt{6}-2=\dfrac{2}{\sqrt{6}+2}\)
mà \(\sqrt{7}+\sqrt{5}>\sqrt{6}+2\)
nên \(\sqrt{7}-\sqrt{5}< \sqrt{6}-2\)
3: \(\sqrt{11}-\sqrt{7}=\dfrac{4}{\sqrt{11}+\sqrt{7}}\)
\(\sqrt{7}-\sqrt{3}=\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
mà căn 11>căn 3
nên \(\sqrt{11}-\sqrt{7}< \sqrt{7}-\sqrt{3}\)