Những câu hỏi liên quan
DT
Xem chi tiết
NT
17 tháng 6 2023 lúc 12:40

a: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

b: DA=DM

=>góc DAM=góc DMA

 

Bình luận (0)
MN
Xem chi tiết
TV
Xem chi tiết
PT
Xem chi tiết
NT
10 tháng 12 2021 lúc 21:58

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Bình luận (1)
VN
Xem chi tiết
NM
1 tháng 8 2016 lúc 21:43

Võ Hùng Nam hảo hảo a~

Bình luận (0)
NT
1 tháng 2 2022 lúc 13:40

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

Bình luận (0)
H24
Xem chi tiết
HD
Xem chi tiết
NT
13 tháng 1 2022 lúc 20:57

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE⊥BC

c: Xét ΔDEC vuông tại E và ΔDAM vuông tại A có 

DE=DA

EC=AM

Do đó: ΔDEC=ΔDAM

Suy ra: DC=DM

Bình luận (1)
QD
Xem chi tiết
NT
14 tháng 12 2022 lúc 13:42

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do dó: ΔBAD=ΔBED

=>DA=DE
b: Sửa đề: BD vuông góc với AE

Ta có: BA=BE

DA=DE

Do đó; BD là trung trực của AE

=>BD vuông góc với AE

c: Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

Bình luận (0)
GT
Xem chi tiết
NT
19 tháng 11 2023 lúc 18:17

a:

AB+BF=AF

AE+EC=AC

mà AB=AE và AC=AF

nên BF=EC

Xét ΔAEF và ΔABC có

AE=AB

\(\widehat{EAF}\) chung

AF=AC

Do đó: ΔAEF=ΔABC

=>\(\widehat{AEF}=\widehat{ABC}\) và \(\widehat{AFE}=\widehat{ACB}\)

\(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{DEC}\)

Xét ΔDBF và ΔDEC có

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

\(\widehat{DFB}=\widehat{DCE}\)

Do đó: ΔDBF=ΔDEC

=>DB=DE

Xét ΔABD và ΔAED có

AB=AE

BD=ED

AD chung

Do đó: ΔABD=ΔAED

=>\(\widehat{BAD}=\widehat{EAD}\)

=>AD là phân giác của \(\widehat{BAC}\)

b: Xét ΔABM và ΔAEM có

AB=AE

\(\widehat{BAM}=\widehat{EAM}\)

AM chung

Do đó: ΔABM=ΔAEM

=>MB=ME

AC-AB=EC

mà EC>MC-ME

và MC=MF

nên AC-AB>MC-ME=MC-MB(ĐPCM)

Bình luận (0)
VL
Xem chi tiết
TT
12 tháng 3 2022 lúc 16:57

a) Xét \(\Delta ABD\) và \(\Delta EBD:\)

BD chung.

\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác \(\widehat{B}).\)

\(\Rightarrow\Delta ABD=\Delta EBD\) (cạnh huyền - góc nhọn).

\(\Rightarrow\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).

Mà \(\widehat{BAD}=90^o\left(\widehat{BAC}=90^o\right).\)

\(\Rightarrow\widehat{BED}=90^o.\)

\(b)\Delta ABD=\Delta EBD\left(cmt\right).\\ \Rightarrow AB=EB.\)

Xét \(\Delta ABE:\)

\(AB=EB\left(cmt\right).\)

\(\Rightarrow\Delta ABE\) cân tại B (Tính chất tam giác cân).

Xét \(\Delta ABE\) cân tại B:

BD là phân giác \(\widehat{B}\left(gt\right).\)

\(\Rightarrow\) BD là trung trực của AE (Tính chất các đường trong tam giác cân).

Bình luận (0)