Chứng minh rằng tồn tại 1 số có dạng 2n -1 chia hết cho 2017
Chứng minh rằng luôn tồn tại số nguyên dương n không vượt quá 2016 sao cho 2n-1 chia hết cho 2017.
Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)
Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k
Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017
- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)
- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)
\(\Rightarrow2^j-2^i⋮2017\)
\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)
\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)
\(\Rightarrow n=j-i\) thỏa mãn yêu cầu
Chứng minh rằng tồn tại 1 số có dạng 2017^k-1:2016
Dấu ":" là dấu chia hết
Chứng minh rằng tồn tại số có dạng : 201620162016...2016 chia hết cho 2017
chứng minh rằng tồn tại số có dạng 20162016...2016 gồm k số 2016(k là số tự nhiên, 1<k<2018) chia hết cho 2017
Chứng minh rằng tồn tại số có dạng :
a) 201520152015....201500....000 chia hết cho 2016
b) 201620162016...2016 chia hết cho 2017
a) Xét 2017 số: 2015;20152015;...
Khi chia số hạng của dãy cho 2016 thì sẽ có hai phép chia có cùng số dư.Giả sử 2 số đó là: a= 201520152015..2015(m số 2015) b= 201520152015...2015(n số 2015) (với 1=< n<m=< 2017)
=> Hiệu của a và b chia hết cho 2016 hay:
a-b=20152015...2015000chia hết cho 2016 (đpcm)
20162016...201600...000 chia het cho 2017
Chứng minh rằng luôn tồn tại số có dạng 20162016...2016 (gồm các số 2016 viết liên tiếp nhau) chia hết cho 2017.
Xét các số :2016;20162016;..........;2016;...;2016(2018 số 2016)
Có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư
Giả sử số đó là 2016..........2016 (m số 2016) và 2016.......2016(n số 2016) (m;n E N m>n)
Suy ra 2016.........2016-2016.......2016 chia hết cho 2017
m số 2016 n số 2016
Suy ra 2016...........2016x1000
m-n số 2016
Mà (1000 n ;2017)=1
Suy ra 2016.......2016 chia hết cho 2017(m-n số 2016) (đpcm)
dùng dirichle, xét 2018 số 2016,20162016,....,20162016...2016(2018 số 2016) thì luôn tồn tại 2 số có hiệu chia hết cho 2017, gọi hai số đó là
20162016...2016(m số 2016) và 20162016...2016(n số 2016) trong đó 1≤m≤n≤20181≤m≤n≤2018
hiệu của chúng là 20162016...201600..0(n số 2016 và m-n số 0) chia hết cho 2017
rút 10m−n10m−n ra và để ý (10m−n;2017)=1(10m−n;2017)=1.
do đó ta có đpcm
CHỨNG MINH RẰNG TỒN TẠI 1 SỐ GỒM TOÀN CHỮ SỐ 6 CHIA HẾT CHO 2017
Chứng minh rằng tồn tại 1 số có dạng 200320032003...2003 chia hết cho 1991.
bạn ơi thế thì phải có 1991 số 2003 nha
\(gcd\left(1991;10^k\right)=1\) với mọi \(k\).
Giả sử ko có số nào dạng \(2003...2003\) mà chia hết cho \(1991\).
Xét \(1992\) số \(2003,20032003,...,20032003...2003\) (số cuối cùng có \(1992\) lần lặp \(2003\)).
Theo nguyên lí Dirichlet thì tồn tại 2 số cùng số dư khi chia cho \(1991\).
Gọi chúng là \(2003...2003\) có \(m\) và \(n\) lần lặp số \(2003\).
Ta trừ chúng cho nhau, ở đây cho \(m>n\) thì hiệu là con số này:
\(2003...2003000...000\) (trong đó có \(m-n\) số \(2003\)và \(n\) số \(0\))
Số này chia hết cho \(1991\).
Mà \(gcd\left(1991;10^n\right)=1\) nên \(2003...2003\) (với \(m-n\) số \(2003\)) chia hết cho \(1991\) (vô lí)
Vậy điều giả sử là sai, suy ra đpcm.
Thank you anh nha! Nhưng mà em học cấp 2, đọc hổng hiểu!?
Chứng minh rằng tồn tại 1 số chia hết cho 1993 có dạng 19941994...1994.
Em đã được học nguyên lí Dirichlet chưa?
Đề của em bị thiếu nhé.