Tìm \(x\in Z\)biết \(x^3+5x^2+2x+3=0\)
1. Tìm x€ Z, biết
a/ |7x+3|=66
b/ |5x-2| <=0
c/ (x-7)×(x+3)<0
2. Tìm x, y€ Z, biết
a/(x-3)×(2y-2)=7
b/(2x+1)×3(3y-2)=-55
a) \(\left|7x+3\right|=66\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x+3=66\\7x+3=-66\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x=63\\7x=-69\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=9\left(N\right)\\x=-\frac{69}{7}\left(L\right)\end{cases}}\)
Vậy...
b) \(\left|5x-2\right|\le0\)
mà \(\left|5x-2\right|\ge0\)
\(\Rightarrow\)\(\left|5x-2\right|=0\)
\(\Leftrightarrow\)\(5x-2=0\)
\(\Leftrightarrow\)\(x=\frac{2}{5}\) (loại)
Vậy...
Bài 1 : Tìm x, biết :
1) 3x2 + 21x = 0
2) 5x - 6x2 = 0
Bài 2 : Tìm x, y\(\in\)Z, biết :
1) xy = 5
2) ( x - 1) ( y - 2 )
3) ( 2x + 3 ) ( 5 - y ) = 0
trình bày ra hộ mình nha thank you các bạn!
Bài 1 : a) 3x2 +21x=0
3x(x+7)=0
=> x=0 hoặc x+7=0 =>x=0 hoặc x= -7
b)5x-6x2=0
x(5-6x)=0
=> x=0 hoặc 5-6x=0 => x=0 hoặc x=\(\frac{5}{6}\)
\(3x^2+21x=0\)
\(\Rightarrow3x\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}\)
\(5x-6x^2=0\)
\(\Rightarrow x\left(5-6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5-6x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{6}\end{cases}}}\)
\(\left(2x+3\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+3=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=5\end{cases}}}\)
Tìm x ϵ Z biết:
a) | 2x – 5 | = 13
b) \(\left|7x+3\right|\) = 66
c) | 5x – 2| \(\le\) 0
a) I 2x-5 I = 13
=> 2x-5 =13 => x=9
hoặc 2x-5= -13 => x=\(\dfrac{-8}{2}\)
a) | 2x-5 | = 13
=>2x-5 = 13 hoặc 2x-5 = -13
+)2x-5 = 13
=>2x = 13+5 =18
+)2x-5 =-13
=>2x=-13+5 = -8
=>x=-4
Vậy x thuộc {9;-4}
Vậy x=9
b)|7x+3|=66
=>7x+3 = 66 hoặc 7x+3 = -66
+)7x+3=66
=>7x=66-3=63
=>x=9
+)7x+3=-66
=>7x=-66-3=-69
=>x=-69/7 (loại vì x thuộc Z )
Vậy x=9
c) Có | 5x-2|\(\le\)0
mà |5x-2|\(\ge\)0
=>|5x-2|=0
=>5x-2=0
=>5x=2
=>x=2/5 ( loại vì x thuộc Z)
Vậy x=\(\varnothing\)
Giải:
a) \(\left|2x-5\right|=13\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\left(t\backslash m\right)\\x=-4\left(t\backslash m\right)\end{matrix}\right.\)
b) \(\left|7x+3\right|=66\)
\(\Rightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{-69}{7}\end{matrix}\right.\)
Vì \(x\in Z\) nên x=9
c) \(\left|5x-2\right|\le0\)
mà \(\left|5x-2\right|\ge0\)
\(\Rightarrow\left|5x-2\right|=0\)
\(5x-2=0\)
\(5x=0+2\)
\(5x=2\)
\(x=2:5\)
\(x=\dfrac{2}{5}\) (loại)
Vậy \(x\in\) ∅
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in Z\) | \(2x^3-3x^2-5x=0\) }
b) B = { \(x\in Z\) | \(x< \left|3\right|\) }
c) C = { x = 3k; x, \(k\in Z\); -4<x<12 }
a) \(2x^3-3x^2-5x=0\)
\(x\left(x+1\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=-1\left(TM\right)\\x=\dfrac{5}{2}\left(L\right)\end{matrix}\right.\)
\(A=\left\{-1\right\}\)
b) \(x< \left|3\right|\)\(\Leftrightarrow-3< x< 3\)
\(B=\left\{-2;-1;1;2\right\}\)
c) \(C=\left\{-3;3;6;9\right\}\)
a) \(A=\left\{x\in Z|2x^3-3x^2-5x=0\right\}\)
\(2x^3-3x^2-5x=0\)
\(\Leftrightarrow x\left(2x^2-3x-5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow A=\left\{0;-1\right\}\)
b) \(B=\left\{-2;-1;0;1;2\right\}\)
c) \(C=\left\{-3;3;6;9\right\}\)
Tìm x,y∈Z,biết:
Tìm x,y∈Z,biết:
18*) (x-6)(3x-9)>0
19*) -2x(x+5)<0
20*) (2x-1)(6-x) >0
21*) (2-x)(x+7) <0
22*) |x+3|≤2
23*) (x + 3)(x2 + 2) > 0
24*) (x - 2)(-9 - x2 ) < 0
25*) |x + 25| + |5 - y|=0
26*) |x - 40 | + |x - y + 10 | lớn hơn hoặc bằng 0
27*) (x – 3)(3y + 2) = 7
28*) 5xy – 5x + y = 5
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
21.
\((2-x)(x+7)< 0\)
TH1.
\(\orbr{\begin{cases}2-x>0\\x+7< 0\end{cases}\Rightarrow\orbr{\begin{cases}x< 2\\x>-7\end{cases}}\Rightarrow-7< x< 2}\)
TH2.
\(\orbr{\begin{cases}2-x< 0\\x+7>0\end{cases}\Rightarrow\orbr{\begin{cases}x>2\\x< -7\end{cases}}\Rightarrow2< x< -7}\)(vô lí)
Vậy \(-7< x< 2\) thì \((2-x)(x+7)< 0\)
tìm x biết
a) (5x-1)(2x-1/3)=0
b) (x^2+1)(x-4)=0
c) 2x^2 -1/3x=0
d) (4/5)^5.x=(4/5)^7
e)Tìm x thuộc z để A=x+5/x-2 có giá trị nguyên
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Tìm x, y thuộc Z , biết :
a) ( 2x - 10 ) ^ 2 + ( 4 - 2y ) ^ 2 = 0
b) ( x - 2 ) . ( x + 3 ) > 0
c) ( x - 2 ) . ( x + 3 ) < 0
d) ( 2x - 6 ) . ( x - 5 ) > 0
e) ( 2x - 6 ) . ( x - 5 ) <0
f) ( x + 4 ) . ( 2 - x ) < 0
g) ( x + 4 ) . ( 2 - x ) > 0
h) ( x ^ 2 + 3 ) . ( 5x + 20 ) < 0
Tìm x, biết:
6) x^3 - 2x^2 + 2x = 0
7) 2x^3 - 5x^2 + 8x - 5 = 0