Cho đa thức Q(x) = x3 + 5x2 + 2x + 3. Tìm x thuộc Z để Q(x) = 0
Bài 13. Cho 2 đa thức: P(x)= 4x2 + x3 - 2x +3 -x-x3 +3x -2x2
Q(x)= 3x2 - 3x +2 -x3 +2x - x2
b)Tìm đa thức R(x) sao cho P(x) - Q(x) - R(x) =0
`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)
`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`
`= 2x^2+3`
`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)
`= -x^3+(3x^2-x^2)+(-3x+2x)+2`
`= -x^3+2x^2-x+2`
`P(x)-Q(x)-R(x)=0`
`-> P(X)-Q(x)=R(x)`
`-> R(x)=P(x)-Q(x)`
`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`
`-> R(x)=2x^2+3+x^3-2x^2+x-2`
`= x^3+(2x^2-2x^2)+x+(3-2)`
`= x^3+x+1`
`@`\(\text{dn inactive.}\)
a: P(x)-Q(x)-R(x)=0
=>R(x)=P(x)-Q(x)
=2x^2+3+x^3-2x^2+x-2
=x^3+x+1
Bài 5:
1) a) Cho hai đa thức:
P (x) = 5x2 + 3x3 - 5x2 + 2x3 – 2 +4x – 4x2 + x3
Q(x) = 6x – x3 + 5 – 4x3 + 6 – 3x2 – 7x2
Tính M(x) = P(x) + Q(x)
b) Tìm C(x) biết: (5x2 + 9x – 3x4 + 7x3 -12) + C(x) = -2x3 + 9 – 6x + 7x4 -2x3
2) Tìm nghiệm của các đa thức sau
a) 4x - b) x2 – 4x +3
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
3 Cho hai đa thức P(x) = 2x3 – 2x + x2 – x3 + 3x + 2
và Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến .
b. Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x) c. Chứng tỏ đa thức M(x) không có nghiệm .
a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)
b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)
c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)
\(\Rightarrow M\left(x\right)\) không có nghiệm
a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(=x^3+x^2+x+2\)
Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(=-x^3-4x^2-x+1\)
b: Ta có: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3-4x^2-x+1\)
\(=-3x^2+3\)
Ta có N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3+4x^2+x-1\)
\(=2x^3+5x^2+2x+1\)
phân tích đa thức thành nhân tủ
a) x2-9x
b)3x2-3xy-5x+5y
d)x3+5x2-6x
tìm x thuộc Z để giá trị của biểu thức
M=\(\dfrac{x^2+2x-13}{x-3}\)là một số nguyên
Để \(M=\dfrac{x^2+2x-13}{x-3}\in Z\) thì \(x^2+2x-13⋮x-3\)
\(\Rightarrow\left(x^2-3x\right)+5x-13⋮x-3\)
\(\Rightarrow x\left(x-3\right)+5x-13⋮x-3\)
\(\Rightarrow5x-13⋮x-3\)
\(\Rightarrow\left(5x-15\right)+2⋮x-3\)
\(\Rightarrow5\left(x-3\right)+2⋮x-3\)
\(\Rightarrow2⋮x-3\)
\(\Rightarrow x-3\in U\left(2\right)=\left\{-1;1;-2;2\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=-1\Rightarrow x=2\\x-3=1\Rightarrow x=4\\x-3=-2\Rightarrow x=1\\x-3=2\Rightarrow x=5\end{matrix}\right.\)
Vậy \(x\in\left\{2;4;1;5\right\}\) thì \(M\in Z\)
a) \(x^2-9x\)
\(=x\left(x-9\right)\)
b) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
c) \(x^3+5x^2-6x\)
\(=x\left(x^2+5x-6\right)\)
\(=x\left(x^2-x+6x-6\right)\)
\(=x\left[\left(x^2-x\right)+\left(6x-6\right)\right]\)
\(=x\left[x\left(x-1\right)+6\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(x+6\right)\)
Cho hai đa thức P(x) = 2x3 – 2x + x2 – x3 + 3x + 2
và Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến .
b. Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x) c. Chứng tỏ đa thức M(x) không có nghiệm .
a: P(x)=x^3+x^2+x+2
Q(x)=-x^3+x^2-x+1
b: M(x)=P(x)+Q(x)
=x^3+x^2+x+2-x^3+x^2-x+1
=2x^2+3
N(x)=x^3+x^2+x+2+x^3-x^2+x-1
=2x^3+2x+1
c: M(x)=2x^2+3>=3>0 với mọi x
=>M(x) ko có nghiệm
Cho đa thức P ( x ) = x 3 - 4 x 2 + 3 - 2 x 3 + x 2 + 10 x - 1
Tìm đa thức Q(x) biết P ( x ) + Q ( x ) = x 3 + x 2 + 2 x - 1
A. - 4 x 2 - 8 x - 3
B. 2 x 3 - 4 x 2 + 8 x - 3
C. 2 x 3 + 4 x 2 - 8 x - 3
D. 4 x 2 - 8 x - 3
Chọn C
Ta có: P(x) + Q(x) = x3+ x2+ 2x-1
⇒ Q(x) = (x3 + x2 + 2x-1) - P(x)
= 2x3 + 4x2 - 8x - 3.
Cho đa thức: P(x) = 2 + 5x2 – 3x3 + 4x2 – 2x – x3 + 6x5
Viết các hệ số khác 0 của đa thức P(x).
Hệ số của lũy thừa bậc 5 là 6
Hệ số của lũy thừa bậc 3 là – 4
Hệ số của lũy thừa bậc 2 là 9
Hệ số của lũy thừa bậc 1 là – 2
Hệ số của lũy thừa bậc 0 là 2
Tìm a để đa thức P(x) chia hết cho đa thức Q(x) biết
P(x) = x4-5x2+4x+a
Q(x) = 2x+1
b. Chứng minh rằng:
n3 + 6n2 + 8n chia hết cho 48 với mọi n chẵn
a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)
b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)
Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)
a, P(x):Q(x)=1/2x^3-1/4x^2-19/8x+51/16(dư a-51/16)=>Để P(x) chia hết cho Q(x) thì a-51/16 phải bằng 0 => a=51/16
b, n3 + 6n2 + 8n= n(n2 +6n +8)
= n(n2 + 2n + 4n + 8)
= n[ n(n + 2) + 4(n + 2) ]
= n(n + 2)(n + 4)
Vì n là số chẵn nên đặt n=2k (k thuộc Z) ta được:
2k(2k + 2)(2k + 4)
=8k(k + 1)(k +2)
Vì k, k+1, k+2 là ba số tự nhiên liên tiếp nên có một sò chia hết cho 2 và một sồ chia hết cho 3 => k(k+1)(k+4)⋮6
=> 8k(k+1)(k+4)⋮48 (đpcm)
Cho hai đa thức P(x) = 2x3 – 2x + x2 – x3 + 3x + 2
và Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến .
b. Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x)
c. Chứng tỏ đa thức M(x) không có nghiệm .
Mn giải giúp mik bài này với ạ! Mik đag cần gấp
a: P(x)=x^3-x^2+x+2
Q(x)=-x^3+x^2-x+1
b: M(x)=P(x)+Q(x)=x^3-x^2+x+2-x^3+x^2-x+1=3
N(x)=P(x)-Q(x)
=x^3-x^2+x+2+x^3-x^2+x-1
=2x^3-2x^2+2x+1
c: M(x)=3
=>M(x) ko có nghiệm