Cho x thuộc Z. Tính:
a) | x | + x nếu x > 0 hoặc x = 0
b) | x | + x nếu x < 0
Cho x , y thuộc Z. Hãy chứng tỏ rằng:
a) Nếu x - y > 0 thì x > y
b) Nếu x > y < 0 thì x- y > 0
a) Ta có:
x - y > 0
\(\Rightarrow\)x - y là số nguyên dương nên x = y + q ( q \(\in\)N* )
\(\Rightarrow\)x > y ( đpcm )
b tương tự nha
cho x,y thuộc Z. hãy chứng tỏ rằng :
a, nếu x-y > 0 thì x>y
b, nếu x>y thì x-y>0
a, vì x-y >0 nên x>0+y (chuyển -y từ vế trái sang vế phải) hay x>y
b, tương tự thôi (giống như phần a)
tick nha Ngọc ! (>^_^<)
Cho x ∈ Z và x ≠ 0 và chọn so sánh:
A. -x > x nếu x > 0 B. -x > 0 nếu x > 0 C. -x < x nếu x < 0 D. -x < 0 nếu x > 0
Lời giải:
Nếu $x>0$ thì $-x< 0$. Do đó $-x< 0< x\Rightarrow -x< x$. Đáp án A sai
Nếu $x>0\Rightarrow -x< 0$. Đáp án B sai
Nếu $x< 0\Rightarrow -x>0$. Do đó $-x>0>x\Rightarrow -x>x$. Đáp án C sai
Nếu $x>0\Rightarrow -x< 0$. Đáp án D đúng (chọn)
CMR:
a) Nếu x-y=0 thì xy lớn hơn hoặc bằng 0
b) Nếu x-y+z=0 thì xy+yz-zx > hoặc =0
a. Ta có : x - y = 0 \(\Rightarrow\)x = y
Ta có : xy = xx ( vì x = y) = x^2
Mà x^2 \(\ge\)0 với mọi x nên xy \(\ge\)0 với mọi x.
a) Ta có x-y=0 => x=y
Ta có xy=x.x=x2 > 0 (dấu = <=> x=y=0)
b) x-y+z=0 => x=y-z.Theo kết quả câu a ta có: x(y-z) > 0 => xy-xz > 0 (1)
Tương tự: x-y+z=0 => y=x+z => y(x+z) > 0 => xy+yz > 0 (2)
x-y+z=0 => z=y-x => z(y-x) > 0 => zy-zx > 0 (3)
Cộng từng vế của bất đẳng thức (1),(2),(3) ta đc 2(xy+yz-zx) > 0
Do đó xy+yz-zx > 0 (dấu = <=> x=y=z=0)
Good luck
Làm như Vầy :
Theo bài thì ta có
/x/ + /z/ + /y/ < 0
\(\Rightarrow\)/x/ + /z/ + /y/ = 0 hoặc /x/ + /z/ + /y/ < 0
nếu /x/ + /z/ + /y/ = 0
thì x , y , z đều bằng 0
vì nếu trong x , y , z có số lớn hơn 0 thì không thể ra 0 vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
Nếu /x/ + /z/ + /y/ < 0
thì ta không tìm được kết quả vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
Vậy x , y , z đều bằng 0
Làm như Vầy :
Theo bài thì ta có
/x/ + /z/ + /y/ < 0
\(\Rightarrow\)/x/ + /z/ + /y/ = 0 hoặc /x/ + /z/ + /y/ < 0
nếu /x/ + /z/ + /y/ = 0
thì x , y , z đều bằng 0
vì nếu trong x , y , z có số lớn hơn 0 thì không thể ra 0 vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
Nếu /x/ + /z/ + /y/ < 0
thì ta không tìm được kết quả vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
Vậy x , y , z đều bằng 0
Cho x và -x là 2 số đối nhau
|x| = |-x|,x thuộc Z
|x| lớn hơn hoặc bằng 0 ,x thuộc z
Hãy chứng tỏ rằng với x, y thuộc Z, ta có:
a) Nếu x > y thì x - y > 0
b) Nếu x - y > 0 thì x > y
Cho x,y thuộc Z. Hãy chứng tỏ rằng :
a,Nếu x - y > 0 thì x > y
b, Nếu x > y thì X - y > 0
Hãy giúp mình với. Mình cảm ơn các bạn nhiều
Chứng ming rằng nếu x\(\ne\)0, y\(\ne\)0, z\(\ne\)0 và \(x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}\)thì
hoặc x=y=z hoặc xyz= 1 hoặc xyz= -1
Do \(x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}\)
=> \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=y+\dfrac{1}{z}\Leftrightarrow x-y=\dfrac{1}{z}-\dfrac{1}{y}\Leftrightarrow x-y=\dfrac{y-z}{yz}\\y+\dfrac{1}{z}=z+\dfrac{1}{x}\Leftrightarrow y-z=\dfrac{1}{x}-\dfrac{1}{z}\Leftrightarrow y-z=\dfrac{z-x}{xz}\\z+\dfrac{1}{x}=x+\dfrac{1}{y}\Leftrightarrow z-x=\dfrac{1}{y}-\dfrac{1}{x}\Leftrightarrow z-x=\dfrac{x-y}{xy}\end{matrix}\right.\)
=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\dfrac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)
<=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)x^2y^2z^2=\left(y-z\right)\left(z-x\right)\left(x-y\right)\)
<=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2y^2z^2-1\right)=0\)
=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\) hoặc \(x^2y^2z^2-1=0\)
=> x=y=z hoặc xyz=1 hoặc xyz=-1